Data pre-processing before running **CEllFi**

Fei-Man Hsu

January 12, 2023

CEllFi is a python package that models DNA methylation calls from references with non-negative least squares and estimate the fraction of cell types in a DNA mixture.

\[
\arg\min_x ||Ax - b||^2_2
\]

with the constraint \(x \geq 0, \sum x = 1\), \(A\) denotes an \(m \times n\) matrix.

Dependencies

- python2, [Recommend] Building the environment with virtualenv
 - pandas
 - numpy
 - scipy
- **CEllFi** package
 - Click for reference .bed files and scripts, or contact Dr. Dennis Montoya for Github access

Differentially methylated regions (DMRs)

Here we demonstrate the **CEllFi** deconvolution with blood cells’ whole genome bisulfite sequencing (WGBS) dataset **GSE186458**. Thirty six blood cell WGBS libraries are included for references:

- GSM5652277_Blood-T-CD3-Z000000TV
- GSM5652278_Blood-T-CD3-Z000000UP
- GSM5652279_Blood-T-CD4-Z000000TT
- GSM5652280_Blood-T-CD4-Z000000U7
- GSM5652281_Blood-T-CD4-Z000000UM
• GSM5652282_Blood-T-CD8-Z000000TR
• GSM5652283_Blood-T-CD8-Z000000U5
• GSM5652284_Blood-T-CD8-Z000000UK
• GSM5652285_Blood-T-CenMem-CD4-Z00000417
• GSM5652286_Blood-T-CenMem-CD4-Z0000041D
• GSM5652287_Blood-T-CenMem-CD4-Z0000041N
• GSM5652288_Blood-T-Eff-CD8-Z00000419
• GSM5652289_Blood-T-Eff-CD8-Z0000041F
• GSM5652290_Blood-T-Eff-CD8-Z0000041Q
• GSM5652291_Blood-T-EffMem-CD4-Z00000416
• GSM5652292_Blood-T-EffMem-CD4-Z0000041C
• GSM5652293_Blood-T-EffMem-CD4-Z0000041M
• GSM5652294_Blood-T-EffMem-CD8-Z0000041A
• GSM5652295_Blood-T-EffMem-CD8-Z0000041G
• GSM5652296_Blood-T-Naive-CD4-Z0000041E
• GSM5652297_Blood-T-Naive-CD8-Z0000041B
• GSM5652298_Blood-T-Naive-CD8-Z0000041H
• GSM5652299_Blood-NK-Z000000TM
• GSM5652300_Blood-NK-Z000000U1
• GSM5652301_Blood-NK-Z000000UF
• GSM5652302_Blood-Monocytes-Z000000TP
• GSM5652303_Blood-Monocytes-Z000000U3
• GSM5652304_Blood-Monocytes-Z000000UH
• GSM5652313_Blood-Granulocytes-Z000000TZ
• GSM5652314_Blood-Granulocytes-Z000000UD
• GSM5652315_Blood-Granulocytes-Z000000UT
• GSM5652316_Blood-B-Z000000TX
We aim to build references for B cell, monocyte, granulocyte, nature killer cell (NK cell), and T cell. To achieve this, we first identify cell-type specific hypo-DMRs with the \textit{metilene} software:

```bash
metilene -M 500 -m 10 -d 0.3 -t 2 -v 0.7 --mode 1 --mtc 2 --groupA 'Bcell_' --groupB 'nonBcell_' Bcell_metilene_input.tsv > Bcell_DMR.tsv
```

The above example demonstrates that we demand DMRs with at least 500bp in size with minimum 10 CpG sites that show differential methylation level $\geq 30\%$ between B cell and the other cell types. Further filtering could be applied to acquire hypo-DMRs based on the delta methylation level in column 4 of the output Bcell_DMR.tsv file. We further characterize naive T cell’s hypo-DMRs from other T cell.

To verify the DMRs, we performed supervised hierarchical clustering:

Figure 1: All cell-specific DMRs (n= 110,276)
CpG in these DMRs could be used as references for CElfFi deconvolution. However, it could take hours for CElfFi to construct reference matrix, and, when applied to targeted-bisulfite sequencing data (TBS), the joint matrix of reference and sample would have *nan* in majority, which is not cost-effective. Subset is therefore recommended. The following cluster heatmap shows that the only 60 DMRs, subset from the COVID19 TBS dataset, still are able to distinguish the 6 cell types:

![Figure 2: TBS subset cell-specific DMRs (n= 60)](image)

After subsetting the CpG, all reference .bed files are moved to ./ref/ directory.

Validation

Three .conf files need to be ready before running CElfFi:

- cellfi_reference.conf, binary classification pointing the reference .bed to the cell type
- cellfi_sample.conf, sample .bed to be deconvoluted
- cellfi_group.conf, cell types to be included in the analysis

Make sure the reference and sample .bed files are in the correct directory, and run:
Figure 3: Example of cellfi_reference.conf

<table>
<thead>
<tr>
<th>FILE</th>
<th>Bcell</th>
<th>Tcell</th>
<th>NKcell</th>
<th>Monocyte</th>
<th>Granulocyte</th>
<th>NaiveT</th>
</tr>
</thead>
<tbody>
<tr>
<td>./ref/CSM6552277_8lood-T-CD3-2000000FT_all_cell-type-specific_Hypomethylation.bed</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>./ref/CSM6552277_8lood-T-CD4-2000000FT_all_cell-type-specific_Hypomethylation.bed</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>./ref/CSM6552279_8lood-T-CD3-2000000FT_all_cell-type-specific_Hypomethylation.bed</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>./ref/CSM6552280_8lood-T-CD4-2000000FT_all_cell-type-specific_Hypomethylation.bed</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>./ref/CSM6552282_8lood-T-CD3-2000000FT_all_cell-type-specific_Hypomethylation.bed</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 4: Example of cellfi_sample.conf

```plaintext
python ./scripts/bs_decon_pipe.py -pipe_o ./ -estimate_refs Bcell,Granulocyte,Monocyte,NKcell,NaiveT,Tcell -detect_delta 0.30 -select_num_hypo 15 -select_ttest_p 0.1 -select_anova_p 0.1 -select_sam_cpg 5 -select_cell_delta 0.3
```

Figure 5: Example of cellfi_group.conf

Figure 6: Example of cellfi_coeff_meth.txt

Noted that parameters could be adjusted if needed. Several intermediate .txt files will be generated, and the `cellfi_coeff_meth.txt` is the final output that shows the fraction of denoted cell types in the query sample.

In order to validate the CellFi deconvolution, we took the following WGBS data (in the ./samples/ directory):

- CD4_CD45_RA_naïve_5277, pellegrini lab
- CD4_CD45_RO_memory_5277, pellegrini lab
- classical_monocyte_C000S5A1bs, blueprint
- mature_neutrophil_C000S5A2bs, blueprint
- natural_killer_cell_C002CTA1bs, blueprint
- in silico synthetic mixture of 30% B cell and 70% Monocyte
- in silico synthetic mixture of 70% B cell and 30% Monocyte

Figure 7 below shows that all WGBS are with > 90% composition of the indicated cell types.
Figure 7: CellFi validation