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Why do we care about structure?
Structure/Function relationship

You may already know about your targets function - Structure
can provide the why of function.

Atomic coordinates allow quantitative predictions to be made.
Being able to look at your model can provide new insights.

Knowledge of a structure can allow us to make beneficial
changes.



How do we currently get structures?
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Target selection
Protein production
Crystallization

X-ray crystallography

Structure calculation
Refinement

= Data collection

Phasing

= Validation
Deposition to PDB

Annotation

http://www-structmed.cimr.cam .ac.uk/Course/Overview/Overvigw.html#methods



Nuclear Magnetic Resonance (NMR)
NMR spectra
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http://www.embl.de/nmr/gattler/teaching



Cryo-Electron Microscopy (Cryo-EM)
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Each method provides different set of
experimental data.
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X-ray Crystallography:
Electron density from a
structure of DNA is shown
here (PDB entry 196d), along
with the atomic model

NMR: Restraints used to
solve the structure of a small
monomeric hemoglobin. The
protein (1vre and 1vrf) is
shown in green, and
restraints are shown in
yellow.

EM: Tail of the T4
bacteriophage. Surface
rendering of the EM data
(emd-1048) with atomic
coordinates from PDB entries
1pdf, 1pdi, 1pdl, 1pdm, 1pdp,
and 2f18.



Obtaining structure is challenging

m Obtaining structure experimentally is challenging, time
consuming and expensive.

m Experimental methods in structural biology are currently lagging
far behind sequencing.
- PDB has 139,717 entries (as of 04/25/2018), however only
(7,678 are unique.
- By contrast UniProt contains over 114,000,000 unique
entries (as of 04/25/2018).

m Definite need for good modelling tools.



Can we predict there dimensional
protein structure from sequence alone?



The challenge - folding landscapes are complex
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The challenge - folding landscapes are complex
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Folding has a large solution space with
many local minima.

Can we leverage what we already know
about structure to constrain the number of

possible solutions?



Dihedral angles and Ramachandran plot

Richardson. 1981, Advances in Protein Chemistry, 34, 167 -339

Dihedral angles of the peptide
backbone are the source of
almost all the interesting
variability in protein conformation.

Of these phi and psi (either side
of Ca) are the most important.

For amino acids other than
glyceine and proline the number
of possible phi/psi angles is
limited.



Dlhedral angles and Ramachandran plot
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Lovell et al. 2003 Proteins 50:437,

Dihedral angles of the peptide
backbone are the source of
almost all the interesting
variability in protein conformation.

Of these phi and psi (either side
of Ca) are the most important.

For amino acids other than
glyceine and proline the number
of possible phi/psi angles is
limited.



Glu
Met
Ala
Leu
Lys
Phe
Gin
Trp
lle
Val
Asp
His
Arg
Thr
Ser
Cys
Asn
Tyr
Pro
Gly

Propensity for Secondary Structure

o Helix

3 Conformation

B Turn

—

Not all amino acids favor the
same secondary structure.

Destabilize Helices

Valine, Isoleucine: Branched at CB
position.

Serine, Aspartate, Asparagine:
Compete for main chain H-bonds.

Destabilize Sheets
Proline, Glycine: Too flexible or

rigid, can kKink main chain.



Secondary structure prediction - psipred

The PSIPRED Protein Sequence Analysis Workbench

The PSIPRED Protein Sequence Analysis Workbench aggregates several UCL structure prediction methods into one location. Users can submit a protein
sequence, perform the predictions of their choice and receive the results of the prediction via e-mail or the web.
For a summary of the available methods you can read More...

NOTE: users who need to run our methods on a large number of proteins should consider downloading our software using the menu on the left (Server
Navigation -> Software Download).

The PSIPRED Team
Current Contributors David T. Jones, Daniel Buchan, Domenico Cozzetto & Kevin Bryson
Previous Contributors Tim Nugent, Federico Minneci, Anna Lobley, Sean Ward, Liam J. McGuffin

For queries regarding PSIPRED: psipred@cs.ucl.ac.uk

| Input Sequence Filter

Choose Prediction Methods

PSIPRED v3.3 (Predict Secondary Structure) DISOPREDS3 (Disorder Prediction)
pGenTHREADER (Profile Based Fold Recognition) MEMSAT3 & MEMSAT-SVM (Membrane Helix Prediction)
BioSerf v2.0 (Automated Homology Modelling) DomPred (Protein Domain Prediction)
FFPred 3 (Eukaryotic Function Prediction) GenTHREADER (Rapid Fold Recognition)
MEMPACK (SVM Prediction of TM Topology and Helix Packing) pDomTHREADER (Fold Domain Recognition)
DomSerf v2.0 (Automated Domain Modelling by Homology)
Help...

http://bioinf.cs.ucl.ac.uk/psipred/



Secondary Structure Map
Feature predictions are colour coded onto the seguence according to the sequence feature key shown below.
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Conserved motifs



Alpha Helical Motifs
Helix Helix

Stretches of residues with propensity
to form alpha helices can be mapped
onto a helical wheel.

Residues are mapped on the helix
from N-to-C terminus (helices show
right handedness) with 3.7 residues
per turn.

Helices can display different
Loop/Turn properties on different faces.



Helix - Helix Combinations

The four helix bundle: Helices wrap around each other, minimizing
exposure of hydrophobic residues to aqueous environment.
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Beta Turn (Hairpin)

Type I Type II'

NN YT

S
G

AT

Turn motifs often have

prolines, glycines, or other
residues that facilitate kinked
backbones.



Sheets, Keys and Barrels

Sheets have a natural twist and can wrap to
create more complex folds. Motifs vary based
on the way a series of beta strands are linked:

A beta barrel formed by
anti-parallel strands.




Secondary Structure Combinations
The Rossmann Fold

Motif composed of alternating strand - helix
pairs often giving rise to a central sheet
against which helices stack.

Rossmann fold - a putative minimal element in cofactor utilizing enzymes.
(Laurino 2016)



Homology modelling is the logical
extension of this

Proteins found in nature generally exist in their lowest energy
possible conformation.

Exploitexisting structural information to make inferences about
unknown macromolecules.

Alignment of an unknown structure (target) to a similar known
structure (template).

Typically this is an evolutionarily related protein/molecule.

Ultimate goal is to predict a structure with accuracy comparable to
experimental methods.



Basic steps of homology modelling

1: Template recognition = semse———
and initial alignment

2 Alignment correction
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An example alignment

A: ECOLI GRFSFNVRGGRCEACQGDGVIKVEMHFLPDIYVP---CDQCKGKRYNRETLE
RHIME GRFSFNVKGGRCEACQGDGVIKIEMHFLPDVYVT---CDVCHGKRYNRETLD
TREPA GRFSFNVPGGRCEHCKGDGVITIEMNFLPDVYIT---CDVCHGTRFNRETLA
HELPJ SRFSFNVKGGRCEKCQGDGDIKIEMHFLPDVLVQ---CDSCKGAKYNPQTLE
BCACA GRFSFNVKGGRCEACHGDGIIKIEMHFLPDVYVP---CEVCHGKRYNRETLE

ZnG A GRFSFNVKGGRCEACHGDGII----- Geee=- VP---CEVCHGKRYNRETLE
Ydjl GRGGKKGAVKKCTSCNGQGIKFVTROQMGPMIQRFQTECDVCHGTGDIIDPKD

B: Ydj1 C: C-terminal UvrA zinc finger
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A

Croteau et al. Journal of Biological Chemistry 281(36):26370-8



Fragment insertion to fill in gaps
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Local interactions: fragments

* Derived from known structures

 Sampled for similar
sequences/secondary structure
propensity

* Fragment library represents accessible
local structures for short sequence



Loop modelling - The bane of homology
modelling

a. L3-9-cis7-1 and L3-9-cis7-2

b. L3-9-cis7-1 and L3-9-1

c. L3-9-cis7-1 and L3-9-2

Loops are a challenge for homology
modelling - few rules.

Important for understanding biological
function, interfaces and interactions.

With current methods it is hard to
accurately predict loops longer than 12 -
14 residues.

Problem is not a sampling one

— Can computationally sample all loop
conformations but discrimination is
difficult.

Some methods of loop modelling are
inspired by robotics and video games!



Structural Examples of

prediction biological
methods usefulness
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Zhang. Curr Opin Struct Biol. 2009 April ; 19(2): 145-155



Homology modelling best practices

Garbage in, garbage out - the converse is also true.

Sequence identity is generally a good predictor of how well
things will work.

However, not all regions of protein are equal.
- Be mindful of secondary structure.

Generally sequences well matching in the hydrophobic core
can give good models - more evolutionarily conserved.
Quality of the template model is also very important

— You can only be as confident in homology model as you
are in template.



