Sequencing Technology

MCDB 187
Matteo Pellegrini
Sequencing Technology

- Sanger Sequencers
- Applied Biosystems
- New technologies:
 - 454, SOLiD, Solexa
Sanger sequencing

A PRIMER OF GENOME SCIENCE, Second Edition, Figure 2.1 (Part 1) © 2005 Sinauer Associates, Inc.
Sanger Sequencing

Manual

Sequence

A
T
C
G

Automated

Time

A
T
G
C

A PRIMER OF GENOME SCIENCE, Second Edition, Figure 2.1 (Part 2) © 2005 Sinauer Associates, Inc.
Sanger Sequencing
Sanger Sequencing Throughput

• 35 kbases per day

• 1000 base read length
New Sequencing Technology: 454

- 200-400 base reads
- 200,000 reads per run
- 100 million bases per run
- 1 day
Solexa Sequencing–by–Synthesis
animation adapted from www.illumina.com
Solexa Sequencing–by–Synthesis
animation adapted from www.illumina.com
Solexa Sequencing–by–Synthesis
animation adapted from www.illumina.com

Prepare genomic DNA sample
Randomly fragment genomic DNA and ligate adapters to both ends of the fragments
Solexa Sequencing–by–Synthesis

animation adapted from www.illumina.com

Prepare genomic DNA sample
Randomly fragment genomic DNA and ligate adapters to both ends of the fragments
Solexa Sequencing–by–Synthesis

animation adapted from www.illumina.com

Prepare genomic DNA sample
Randomly fragment genomic DNA and ligate adapters to both ends of the fragments
Solexa Sequencing–by–Synthesis
animation adapted from www.illumina.com

Attach DNA to surface
Bind single stranded fragments randomly to the inside surface of the flow cell channels.
Solexa Sequencing–by–Synthesis
animation adapted from www.illumina.com

Bridge amplification
Add unlabeled nucleotides and enzyme to initiate solid-phase bridge amplification.
Solexa Sequencing–by–Synthesis
animation adapted from www.illumina.com

Completion of amplification
On completion, several million dense clusters of double stranded DNA are generated in each channel of the flow cell.
Solexa Sequencing–by–Synthesis
animation adapted from www.illumina.com

First chemistry cycle: determine first base
To initiate the first sequencing cycle, add all four labeled reversible terminators, primers and DNA polymerase enzyme to the flow cell.
Solexa Sequencing–by–Synthesis
animation adapted from www.illumina.com

Image of first chemistry cycle
After laser excitation, capture the image of emitted fluorescence from each cluster on the flow cell. Record the identity of the first base for each cluster.

Before initiating the next chemistry cycle
The blocked 3' terminus and the fluorophore from each incorporated base are removed.
Image of second chemistry cycle is captured by the instrument
After laser excitation, collect the image data as before. Record the identity of the second base for each cluster.
Solexa Sequencing–by–Synthesis
animation adapted from www.illumina.com

Image of second chemistry cycle is captured by the instrument
After laser excitation, collect the image data as before. Record the identity of the second base for each cluster.
Solexa Sequencing–by–Synthesis
animation adapted from www.illumina.com

Image of second chemistry cycle is captured by the instrument
After laser excitation, collect the image data as before. Record the identity of the second base for each cluster.
Solexa Sequencing–by–Synthesis
animation adapted from www.illumina.com

Cycle 1: T G C A
Cycle 2: C T G A
Cycle 3: T T C C
Cycle 4: G A C C
Cycle 5: T A G G

Sequence read over multiple chemistry cycles
Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at a time.
Solexa Sequencer

• One run generates one hundred billion bases
• The first 76 to 100 bases of a read are usually sequenced
• Paired-end mode permits sequencing of both pairs of a read
• Cost of a run is about $4K
Future Sequencers

- Pacific Biosciences
- Individual Polymerases anchored to bottom of wells
- DNA sequenced in real time (1 base/second)
Labeled Nucleotides

Figure 1. Phospholinked nucleotides
Figure 2. Processive Synthesis with Phospholinked Nucleotides.

Step 1: Fluorescent phospholinked labeled nucleotides are introduced into the ZMW.
Step 2: The base being incorporated is held in the detection volume for tens of milliseconds, producing a bright flash of light.
Step 3: The phosphate chain is cleaved, releasing the attached dye molecule.
Step 4-5: The process repeats.
Zero Mode Waveguides

Attenuated light from the excitation beam penetrates the lower 20-30nm of each waveguide, creating a detection volume of only 20 zeptoliters (10^{-21} liters)
Architecture of Sequencer

Figure 6. SMRT Cell consumable architecture
Pacific biosciences

• Long Reads
• Thousands of wells
• Human genome in minutes for $100?