Identifying The Components of Cellular Pathways and Protein Complexes using Co-evolution

MCDB187

Proteins are Components of Molecular Machines

Hartwell LH, Hopfield JJ, Leibler S, Murray AVV. From molecular to modular cell biology. Nature. 1999 Dec 2;402(6761 Suppl):C47-52.

The Study of the Co-Evolution of Non-Homologous Proteins

- Because selection generally acts to maintain or delete entire complexes and pathways, pairs of proteins that are part of these will appear to co-evolve across bacteria
- By studying the co-evolution of nonhomologous proteins across these bacteria we attempt to reconstruct the components of complexes and pathways

Bacterial Diversity

1000 fully sequenced
genomes in Genbank

•30,000 species represented in Genbank

Sea may support2,000,000*

Soil may support4,000,000*

*T.P. Curtis, W.T. Sloan, and J.W. Scannell. 2002. Estimating prokaryotic diversity and its limits Proc Natl Acad Sci USA 99: 10494-10499.

Methods to Infer Co-evolution

Method

Phylogenetic Profile

Rosetta Stone

Gene Neighbor

Gene Cluster

Basis

Pairs of genes that are always present or absent together

Pairs of proteins that are fused in some organism

Pairs of genes that are coded nearby in multiple organisms

Gene proximity within genome

Phylogenetic Profile

Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO, Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A. 96(8): 4285-8,. 1999

Phylogenetic Profiles of flagellar protein cluster together

Hypergeometric Distribution

How often do we observe an overlap of k elements when we draw two lists of size m and n from a population of size N?

$$P(k \mid n, m, N) = \frac{\binom{n}{k}\binom{N-n}{m-k}}{\binom{N}{m}}$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Gene Neighbor Method

Pellegrini M, Thompson MJ, Fierro J, Bowers P, A Computational Method to Assign Microbial Genes to Pathways. Journal of Cellular Biochemistry Suppl 37:106-9, 2001

Linking

Dihydrofolate

reductase and

Thymidilate

synthase

Gene Neighbor Probability

The probability that a pair of genes *i*, *j* in genome *k* with n_k genes would be separated a distance d^* less than the observed distance *d*,

$$P(d_{ij}^* \le d_{ij}) = \frac{2d_{ij}}{n_k - 1}$$

For a pair of genes *i*, *j* across *m* genomes

$$Q = \prod_{k=1}^{m} \frac{2d_{ij}}{n_k - 1}$$

The probability of observing a Q^* less than the observed Q is

computed using the Gamma distribution

Rosetta Stone Method Identifies Protein Fusions

Monomeric proteins that are found fused in another organism are likely to be functionally related and physically interacting.

Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D, Detecting protein function and protein-protein interactions from genome sequences. Science 285(5428):751-3, 1999

Rosetta Stone Probability

As in the case of Phylogenetic Profiles we can use the Hypergeometric distribution to estimate the statistical significance of the overlap

Gene Cluster

If we model the start of genes as a random process, we can use the Poisson distribution to estimate the probability that two genes are separated by a distance greater than the observed one

Tryptophan Operon

P=0.91 P<0.01 P=0.09 P<0.01 P<0.01 P=0.53 P=0.67

trpA trpB trpC trpD trpE trpL yciV

Here, a p-value threshold of 0.1 captures all but one of the genes for this operon.

/ciG

Combining Inferences of Coevolution from Previous

We combine the probabilities from the previous four methods to arrive at a single probability that two proteins co-evolve:

P = min(PP, RS, GN, OP)

This allows us to generate networks where proteins are linked if any one method generates a statistically significant link

Testing the validity of Our Network

•We test the network by asking how often we link together functionally related proteins

• True and False Interactions are derived from Pathway Classification Schemes

- Find the P vales associated with each protein pair
- | 2 P = .00|
- | 3 P = 0.1
- | 4 P = 0.000 |

• 4000 3999 P = 0.5

- Sort pairs by P value
- 101 234 P = .000001
- 1000 300 P = 0.00002
- 3456 423 P = 0.00004
- 57 399 P = I

- Determine whether each pair is a TP or FP association (based on pathways)
- 101 234 P = .000001 TP
- 1000 300 P = 0.00002 TP
- 3456 423 P = 0.00004 FP
- 57 399 P = I

- Compute fraction of TP and FP pairs as a function of rank
- 101 234 P = .000001 TP 1/1000,0/5000
- 1000 300 P = 0.00002 TP 2/1000,0/5000
- 3456 423 P = 0.00004 FP 2/1000,1/5000
- •
- 57 399 P = I FP I,I

Receiver Operator Characteristic Curve

TP = same pathway FP = different pathways

Networks of Co-evolving Proteins

We can generate networks of co-evolution by selecting only pairs of proteins whose probability of co-evolution is above a threshold

Fail Ling

Alternative Representations of Network

Strong M, Graeber TG, Beeby M, Pelligrini M, Thompson MJ, Yeates TO, Eisenberg D. Inference and Visualization of Protein Networks in Mycobacterium tuberculosis Based on Hierarchical Clustering of Whole Genome Functional Linkage Maps. Submitted to Nucleic Acids Research

Hierarchical Clustering Reveals Modular Evolution

Clusters are Enriched for Pathways and Complexes

Examples of Clusters that Contain Components of Biochemical Pathways

Cluster Reveals Additional ORFs Involved in Lipopolysaccharide Biosynthesis

Order: 1st Proteins: 9 Method (# links) — PP (34) RS (0) - GN (0) - GC (0) - TL (0) - Multiple (7) **KEGG Pathways** Lipopolysaccharide bi... Sphingoglycolipid met... Blood group glycolipi... Arginine and proline ... Histidine metabolism Nicotinate and nicotin ... Pantothenate and CoA.. □ Valine, leucine and is... Lysine biosynthesis Lysine degradation Tyrosine metabolism Phenylalanine metabol.. D-Arginine and D-orn.. Aminosugars metabol. Glycerolipid metabolism Ethylbenzene degrada.. Eutanoate metabolism

Gene: kdtA

Clusters are also Enriched for Subunits of Protein Complexes

True positive interactions are between subunits of known complexes and false positive ones are between subunits of different complexes.

For high confidence links, we recover one third of true interactions and only one thousandth of the false positive ones

Clusters Containing Subunits of Protein Complexes

Cytochrome c oxidase controls the last step of food oxidation

Rv1311 atpC Rv1307 atpH Rv1306 atpF Rv1309 atpG Rv1304 atpB Rv1310 atpD Rv1308 atpA

ATP Synthase

Identification of an Uncharacterized Protein Complex

Conclusions

 Protein modules appear to co-evolve across bacterial species

 Modules are enriched for proteins that participate in the same pathway or complex

PROLINKS Database

We have constructed a database that contains co-evolution links between the genes of 150 fully sequenced genomes

The Prolinks database may be accessed through the Proteome Navigator web browser interface at:

prolinks.mbi.ucla.edu/

Peter M Bowers, Matteo Pellegrini, Mike J. Thompson, Joe Fierro, Todd O. Yeates, David Eisenberg. PROLINKS: A Database of Protein Functional Linkages Derived from Co-evolution, Genome Biology, in press

Proteome Navigator Access Page

Proteome Navigator

Search by Database Identifier		
GenBank		
	Show Protein	

OR

Search by Protein Characteristic			
Number of Criteria to Display: [3]6[9]12[15]			
Genom	e: Escherichia coli K12 💌		
Gene Name Contains			
Annotation COG Description COG Description			
InterPro Domain KEGG Pathway PSORT Location Reset Crit	teria Search Proteins		
EC Number Amino Acid Sequence			

Proteome Navigator