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Abstract

Methylation of histone H3 lysine 9 (H3K9) is a hallmark of transcriptional silencing in many organisms. In Arabidopsis
thaliana, dimethylation of H3K9 (H3K9m2) is important in the silencing of transposons and in the control of DNA
methylation. We constructed a high-resolution genome-wide map of H3K9m2 methylation by using chromatin
immunoprecipitation coupled with whole genome Roche Nimblegen microarrays (ChIP-chip). We observed a very high
coincidence between H3K9m2 and CHG methylation (where H is either A,T or C) throughout the genome. The coding
regions of genes that are associated exclusively with methylation in a CG context did not contain H3K9m2. In addition, we
observed two distinct patterns of H3K9m2. Transposons and other repeat elements present in the euchromatic arms
contained small islands of H3K9m2 present at relatively low levels. In contrast, pericentromeric/centromeric regions of
Arabidopsis chromosomes contained long, rarely interrupted blocks of H3K9m2 present at much higher average levels than
seen in the chromosome arms. These results suggest a complex interplay between H3K9m2 and different types of DNA
methylation and suggest that distinct mechanisms control H3K9m2 in different compartments of the genome.
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Introduction

Multiple mechanisms control the formation and maintenance of

eukaryotic heterochromatin. One important conserved mecha-

nism is the presence of particular post-translational modifications

of histones, such as methylation. Histones can be mono, di or tri

methylated (m, m2, or m3) and each methylation state can be

controlled by different histone methyltransferase enzymes and can

be associated with different outcomes [1]. For example, mamma-

lian histones modified with tri-methylation at lysine 9 of histone

H3 (H3K9m3) are found in regions of silenced chromatin [2,3].

H3K9m3 is associated with pericentromeric heterochromatin and

crucial for proper mammalian development, as mutants in

H3K9m3 histone methyltransferases, Suv39h1 and Suv39h2,

display genomic instability and impaired viability [3–5]. In

Arabidopsis, di-methylation of histone H3 lysine 9 (H3K9m2) is

associated with heterochromatin formation, while H3K9m3 is

found throughout euchromatin [6]. Several histone methyltrans-

ferases are responsible for the propagation of H3K9m2, including

KRYPTONITE/SUVH4 (KYP), SUVH5 and SUVH6 [7–10].

In addition to eliminating H3K9m2, kyp suvh5 suvh6 triple mutants

also reduce DNA methylation and lead to the loss of silent

epigenetic states of heterochromatin as observed by transposon

reactivation [9].

DNA methylation in Arabidopsis is present in three DNA

sequence contexts: CG, CHH and CHG (where H = A, T, or C).

The initial establishment of methylation (de novo methylation) in all

three sequence contexts requires the DOMAINS REARRANGED

METHYLASE 2 DNA methyltransferase (DRM2) [11]. DRM2

appears to be guided by 24 nucleotide small interfering RNAs

(siRNAs), because the establishment of methylation is blocked by

mutations in several RNA silencing genes that control siRNA

biogenesis or utilization including ARGONAUTE4 (AGO4), RNA

DEPENDENT RNA POLYMERASE2 (RDR2), DICER-LIKE3 (DCL3),

RNA POLYMERASE IVa (NRPD1a), RNA POLYMERASE IVb

(NRPD1b), and DRD1 [12–19]. The mechanisms involved in the

maintenance of DNA methylation are different depending on the

sequence context of the cytosine [20,21]. CG methylation is

maintained by the DNA methyltransferase MET1, which is a

homolog of mammalian Dnmt1 [20,22–27], and by an accessory

factor called UHRF1 in mammals or VIM/ORTH in Arabidopsis

[28–31]. CHH methylation is maintained by mechanisms very similar

to that of de novo methylation, because drm2 and the same suite of RNA

silencing mutants cause losses of CHH methylation [20]. However,

the DNA methyltransferase CHROMOMETHYLASE3 (CMT3)

also plays some role in CHH maintenance and acts redundantly with

DRM2 at some loci [11]. CMT3 is also the main enzyme acting to

maintain CHG methylation throughout the genome, however, at

some loci DRM2 also plays an important role [11,32].

CHG DNA methylation was found to be linked to H3K9m2

when screens for mutations that reduce CHG DNA methylation

uncovered mutations in the KYP locus encoding a histone H3
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methyltransferase [7,33]. kyp mutations were shown to specifically

reduce H3K9m2 in vivo, and KYP is efficient at mono- and di-

methylation, but not trimethylation, of H3K9 sites in vitro [34].

The mechanism by which H3K9m2 controls CHG DNA

methylation is not yet clear but appears to involve direct

recruitment of CMT3 to methylated histones because CMT3

contains a chromodomain that is capable of binding directly to

methylated histone peptides [35]. Efficient binding of CMT3

chromodomain to methylated histones in vitro required simulta-

neous methylation of both the lysine 9 and lysine 27 positions,

suggesting that H3K27 methylation may also be involved in the

recruitment of CMT3 [35]. More recently, the SRA domain

present within KYP was shown to bind in vitro to oligonucleotides

that are methylated at CHG sites, suggesting that KYP is directly

recruited to methylated DNA [30]. These results suggest a self-

reinforcing feedback loop between CMT3 and KYP that would

ensure efficient maintenance of CHG DNA methylation.

Recent genome-wide profiling studies of DNA methylation

within the Arabidopsis genome utilizing either microarrays or

whole genome shotgun bisulfite sequencing have revealed key

aspects of DNA methylation patterning [32,36–40]. CG, CHG and

CHH methylation are highly correlated with each other and with

transposons and other repeat sequences throughout the genome. An

interesting exception, however, is in the coding region of genes (gene

bodies), where only CG methylation is found [32,39,40]. Gene body

methylation occurs on about a third of all genes, and these genes

tend to be highly and ubiquitously expressed in different

Arabidopsis tissues [39,40]. The function of this methylation is

unclear, but it has been proposed to be involved in the suppression

of cryptic transcription initiation which would otherwise interfere

with transcription from the 59 promoter [36,40].

Multiple studies have also addressed the location of H3K9m2

either by utilizing chromatin immunoprecipitation (ChIP) at

individual loci, or by using a ChIP-microarray (ChIP-chip)

approach with a microarray consisting of 1-kb probes tiled across

Arabidopsis chromosome 4 [41–45]. These studies indicated that

H3K9m2 is highly enriched on transposons and pseudogenes and is

also associated with repeat elements. In order to gain deeper insight

into H3K9m2 methylation patterning, we profiled H3K9m2 by

using native nucleosome chromatin immunoprecipitation (native

ChIP), coupled with a high resolution Nimblegen array containing

,60 nucleotide probes tiled across the entire Arabidopsis genome

and combined these data with recently published DNA methylation

profiling data. We found that H3K9m2 was specifically associated

with CHG DNA methylation throughout the genome, and not with

body methylated genes that only contain CG methylation.

Furthermore, we found that pericentromeric heterochromatin and

euchromatic chromosome arms show distinct patterns of H3K9m2,

suggesting that different targeting mechanisms exist for these

different genome compartments.

Results and Discussion

Genome-wide detection of H3K9m2
We designed a Roche Nimblegen High Density (HD2) tiling

array with 1.98 million probes spaced every 60 nucleotides and

covering the entire sequenced portion of the Arabidopsis genome.

By tiling across the genome, all repeated sequences were included

and were represented proportionally to their copy number. We

utilized a native chromatin immunoprecipitation (ChIP) method in

which the crosslinking/sonication step was eliminated to achieve

nucleosome resolution data. Chromatin was subjected to limited

digestion with Micrococcal nuclease (MNase) such that the majority

of the chromatin was present as mononucleosomes (Figure S1a).

Digested chromatin was then immunoprecipitated with a highly

specific monoclonal antibody against di-methylated lysine 9 on

histone H3 (H3K9m2) (Figure S1b). ChIP with antibody against the

unmodified C-terminus of histone H3 was used as a control [46].

DNA fragments extracted from either the H3K9m2 or control

immunoprecipitation were amplified, labeled with either cy3 or cy5,

and hybridized to the tiling arrays. Three biological replicates

experiments were performed and each probe was assigned a Z-score

as detailed in Material and Methods. Based on the distribution of Z-

scores, we defined a positive probe as having a score higher than 0.2

(Figure S2). In order to minimize false positive signals, we defined a

set of ‘‘methylated regions’’ utilizing max gap/min run settings that

allow detection of regions not shorter than the size of a

mononucleosome (147 bp) (Material and Methods).

The level of false positive signals was evaluated by including probes

on the array corresponding to the entire chloroplast genome

(154,478 bp sequence), which lacks histones and therefore

H3K9m2. Only 8 regions (1.19%) were falsely identified as being

H3K9m2 positive. Comparing this false positive rate to the 22.5%

positive probes for the nuclear genome, suggests that the majority of

signals in the nuclear genome represent true signal. The reproduc-

ibility of the microarray data was assessed in two ways. First, we

performed additional Nimblegen profiling experiments utilizing a

conventional, formaldehyde crosslinking ChIP method [46]. The

correlation between the two sets of data was very high (Pearson

correlation coefficient = 0.9) (Figure S3). Second, we compared our

results with a list of H3K9m2-positive regions compiled from

previously published studies (Table S1). We confirmed H3K9m2

methylation of 99.6% of previously published regions [41]. These

results suggest that the experimental method and the microarray

platform allow for efficient detection of H3K9m2.

A high correlation between H3K9m2 and CHG DNA
methylation

We identified 17,099 regions with significant levels of H3K9m2,

covering a total of 27 Mb of the sequenced genome (22.5%).

Figure 1 shows a distribution of H3K9m2 along each of the five

Arabidopsis chromosomes in sliding 100 bp window. Consistent

with previous reports and immunofluorescence studies [10,41,47],

H3K9m2 is highly enriched in Arabidopsis pericentromeric

regions and is correlated with DNA methylation (Figure 1).

In order to correlate H3K9m2 with DNA methylation in the

different sequence contexts, CG, CHG and CHH, we compared

the H3K9m2 profiling data with whole genome shotgun bisulfite

sequencing (BS-seq) data, which represents quantitative single

nucleotide resolution data for individual cytosines throughout the

genome [32]. First, we calculated average DNA methylation

percentages within both H3K9m2 highly positive and negative

probes (with Z-scores higher than one and lower than zero,

respectively) (Figure 2a). All three kinds of DNA methylation were

highly enriched within H3K9m2 positive probes, compared to

genome average levels. However, H3K9m2 negative probes were

virtually devoid of CHG and CHH methylation, while CG

methylation was still present. Second, we asked what fraction of

methylated cytosines (defined with the thresholds of .50% for

CG, .20% for CHG and .0% for CHH) fall within H3K9m2

positive regions (as defined as regions with Z-scores.0.2).

Figure 2b shows that only a very small fraction of CHG

methylation does not overlap with these H3K9m2 positive regions

(also see examples in Figure S4), while CG and CHH methylation

shows a higher level of non-overlap. The relatively high fraction of

CG methylated regions that do not overlap with H3K9m2 positive

regions corresponds to genes (Figure S5), consistent with previous

observations of CG-only methylation in the transcribed region

Genome-Wide H3K9m2 Profiling
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(body) of genes. Thus, H3K9m2 is tightly linked to CHG

methylation throughout the genome, and is not present at CG-

only methylated genes.

CHG methylation at individual sites shows a broad distribution

of methylation levels from 20% to 100%. To test if H3K9m2 levels

correlate with different CHG methylation levels, we computed the

average H3K9m2 level within each decile of CHG methylation

level (Figure 2c). Regions with CHG methylation lower than 10%

were mostly devoid of H3K9m2. In contrast, CHG sites

methylated at levels between 10% and 50% showed a monoton-

ically increasing level of H3K9m2. This quantitative correlation

between H3K9m2 and CHG DNA methylation is consistent with

the molecular genetic characterization of KYP and CMT3

[7,30,33–35] and suggests that the linkage between CHG

methylation and H3K9m2 is a genome-wide phenomenon.

Interestingly, CHG sites methylated at a level between 50% and

100% showed a relatively uniform level of H3K9m2, possibly

because this is the maximum level of H3K9m2 attainable.

Distinct patterns of H3K9m2 in pericentromeric
heterochromatin and euchromatic arms

Inspection of the H3K9m2 profiling data in the UCSC genome

browser revealed dramatic differences in the patterns of H3K9m2

in pericentromeric heterochromatin and the euchromatic arms

(Figure 3a). Pericentromeric regions contained long, uninterrupted

regions of high levels of H3K9m2, while euchromatic arms

showed smaller, isolated patches of H3K9m2 with overall lower

levels. To quantitate this phenomenon, we assigned regions of the

five Arabidopsis chromosomes to either pericentromeric regions or

regions corresponding to the euchromatic arms of the chromo-

somes, based on the overall abundance of repeats, genes and DNA

methylation (Figure S6), and then analyzed these two genome

compartments separately. We observed that overall H3K9m2

levels, as measured by the distribution of Z-scores of individual

probes, were higher in pericentromeric regions (median score of

1.78) than in the arms (median score of 0.74). The majority of

H3K9m2 positive probes (those with Z-scores.0.2) in chromo-

some arms had a Z-score lower than 1.2, while the majority of

probes in pericentromeric regions had scores higher than 1.2

(Figure 3b). To avoid the potential ambiguity introduced by cross-

hybridization of repetitive sequences, we performed the same test

using only probes with unique sequences (probes that match only

once to the genome as defined by BLAT analysis) [48]. Consistent

with the observations for all probes, the distribution of Z-scores in

chromosome arms was generally lower than the distribution in

pericentromeric regions (Figure 3b). To eliminate the possibility

that this difference is caused by insensitivity of pericentromeric

regions to MNase digestion, we made similar comparisons utilizing

data obtained from formaldehyde crosslinking ChIP experiments

(Figure S7). We observed the same general trend in this dataset,

with a higher proportion of pericentromeric probes showing high

Z-scores. Another distinction between H3K9m2 patterns in

pericentromeric regions and chromosome arms is the length of

H3K9m2 positive regions (Figure 3a and 3c). H3K9m2 in

pericentromeric regions tended to occupy large domains, showing

an average length of 3.4 kilobases and a maximum length of

350 kilobases (Figure 3c). Conversely, the average length of

H3K9m2 positive regions in chromosome arms was only

0.6 kilobases.

Because of the strong correlation between CHG methylation

and H3K9m2, and because H3K9m2 levels in pericentromeric

heterochromatin are generally higher than in the euchromatic

arms, we expected that CHG methylation would also be higher in

pericentromeric regions than in the arms. Surprisingly however,

when we analyzed the average CHG levels from whole genome

shotgun sequencing data [32], we found that H3K9m2 positive

regions in pericentromeric heterochromatin showed lower overall

levels of CHG methylation (19.9%) than in H3K9m2 positive

regions in the arms (35.9%). We also analyzed the relationship

between CHG methylation levels and the length of the H3K9m2

positive regions in either pericentromeric heterochromatin or the

euchromatic arms. As previously seen for specific elements of the

genome [32], we found a positive correlation between the length of

a region and the percentage of CHG methylation (Figure 4). This

analysis again showed that at any given length of H3K9m2-

positive region, average levels CHG methylation are lower in

pericentromeric heterochromatin than in the arms.

Our results indicate that H3K9m2 tends to be distributed in

large blocks in pericentromeric regions, while in chromosome

arms H3K9m2 forms smaller regions that have lower levels of

H3K9m2 with higher levels of CHG methylation. While it is not

clear why these differences exist, the data suggest that H3K9m2

Figure 1. Distribution of DNA methylation and K9H3m2 methylation along chromosomes. Top panels show average DNA methylation
levels in a sliding 100 kb window [32]. Bottom panels show the number of H3K9m2 positive probes (z-score.0.2) in a sliding 100 kb window.
doi:10.1371/journal.pone.0003156.g001
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may be regulated differently in these two compartments of the

Arabidopsis genome. One possibility is that pericentromeric

heterochromatin may utilize a mechanism not used in chromo-

some arms that allows for the spreading of H3K9m2 to fill large

domains and to target higher levels of H3K9m2. For instance, it

has been proposed that pericentromeric heterochromatin may

Figure 2. Correlation of H3K9m2 methylation with CHG DNA methylation. (a) Average DNA methylation levels genome wide (purple), in
H3K9m2 positive regions (Z score.1, green) and in H3K9m2 negative regions (Z-score,0, orange). (b) Percent of CG, CHG and CHH methylation
falling within H3K9m2 positive regions. (c) Correlation of the percentage of CHG methylation at individual sites throughout the genome with
H3K9m2 levels. The x-axis is divided onto 10 individual bins that represent deciles of the percentage of CHG methylation of all CHG sites in the
genome. Purple bars represent the percentage of CHG sites that fall with each methylation decile (right logarithmic axis), and orange line represents
the average H3K9m2 level (Z-score) (left axis).
doi:10.1371/journal.pone.0003156.g002
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more efficiently replicate epigenetic states during chromatin

replication, whereas smaller elements in the chromosome arms

may require more active targeting by siRNA mediated processes

because they are too small for efficient transmission of epigenetic

information between adjacent nucleosomes [38]. This more active

targeting may also explain the higher levels of CHG DNA

methylation seen in euchromatic arms. Regardless of the

mechanism, these findings underscore a possible difference in

Figure 3. Relationship between H3K9m2 levels and the length of H3K9m2 positive regions in different chromosomal
compartments. (a) Examples of typical H3K9m2 levels present in either euchromatic chromosomal arms or pericentromeric regions. Each gray
bar corresponds to the Z-score of an individual probe. (b) Distribution of z-scores in the euchromatic arms (green) and pericentromeric regions (red).
(c) Lengths of uninterrupted H3K9m2 methylated regions, with each horizontal bar representing a single region in either the euchromatic arms or
pericentromeric regions.
doi:10.1371/journal.pone.0003156.g003
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the targeting or maintenance of H3K9m2 in different genome

compartments.

Association of H3K9m2 with genes
We analyzed the distribution of average levels of H3K9m2

within protein coding genes found in the euchromatic arms of

chromosomes and found that H3K9m2 levels are very low in the

vast majority of genes (Figure 5a). These results are consistent with

the nature of H3K9m2 as a gene silencing mark, and with whole

genome bisulfite sequencing results showing that the majority of

genes are devoid of DNA methylation in their promoters, and

lacking in CHG and CHH methylation in their coding regions

[32,37]. It is also consistent with our finding that H3K9m2 is not

associated with CG-only gene body DNA methylation (Figure S4).

We also analyzed levels of H3K9m2 within the 3518 genes

present in pericentromeric heterochromatin and found that 31%

had significant levels of H3K9m2 methylation (average score is

higher than 0.5), while the majority of genes (75%) were devoid of

H3K9m2 (Figure 5a). These results are consistent with earlier

findings that genes present in heterochromatic regions ‘‘escape’’

targeting by H3K9m2 and DNA methylation and thereby avoid

gene silencing [47], but also show that a significant minority of the

genes are indeed associated with H3K9m2.

We utilized publicly available microarray expression data

averaged over 79 tissues and conditions [49] to analyze expression

levels of 2049 of the 3518 pericentromeric genes which were

present on the ATH1 array used for expression analysis. We found

that the 547 pericentromeric genes with high H3K9m2 levels

(27%) were expressed at very low levels compared to the

unmethylated pericentromeric genes (Figure 5b). In contrast,

genes lacking in H3K9m2 showed a distribution of expression

levels (Figure 5b) similar to those previously reported for all protein

coding genes in the genome (see Figure 3 in [39]). These results are

consistent with previous observations that H3K9m2 methylation is

usually associated with gene silencing and show that genes that

escape H3K9m2 silencing in pericentromeric regions show normal

levels of expression.

Association of H3K9m2 with transposons, repeat
elements and endogenous siRNAs

Transposons (which are often annotated as pseudogenes in the

Arabidopsis genome) are frequently DNA methylated and

silenced, and associated with H3K9m2 [7,32,33,37,39,41–

43,47]. We examined H3K9m2 levels of transposons/pseudogenes

located in pericentromeric regions (77% of all elements) and in the

euchromatic arms (23%). Figure 6 shows that transposons/

pseudogenes located in pericentromeric regions are much more

frequently associated with high levels of H3K9m2 than are

transposons/pseudogenes in the euchromatic arms.

We also analyzed three classes of DNA repeats for H3K9m2

methylation (tandem repeats, inverted repeats, and interspersed

repeats), and found a much higher frequency of H3K9m2 on the

repeats present in pericentromeric regions as compared to those

found in the euchromatic arms (Figure 7a). The majority of

unmethylated repeats (more than 80%) were found in the

euchromatic arms. The fact that many repeats remain unmethy-

lated in the euchromatic arms (for instance 4420 out of 7778

tandem repeats and 2428 out of 3471 inverted repeats), suggests that

repeat character alone may not be sufficient for recognition and

silencing. These findings also underscore the unique nature of

silencing in pericentromeric regions, which encompasses large

swaths of silent chromatin and encompasses many repeat elements.

We examined the distribution of H3K9m2 levels of repeats

found in either pericentromeric heterochromatin or euchromatic

Figure 4. The percentage of DNA methylation increases as the length of H3K9m2 positive regions increases. Average percent DNA
methylation of CG (red), CHG (green) and CHH (blue) was calculated for H3K9m2 positive regions of different lengths.
doi:10.1371/journal.pone.0003156.g004
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arms (Figure 7b). We found that a significant fraction of repeats

found in pericentromeric heterochromatin showed a peak of very

high H3K9m2 levels, which was higher than the levels found in

H3K9 methylated repeats in the arms. These results are consistent

with the general trend of very high levels of H3K9m2 in

pericentromeric regions, and suggest that many types of repeated

DNAs become highly H3K9 methylated in these regions.

Abundant evidence shows that small interfering RNA (siRNAs)

can recruit DNA methylation and gene silencing [50]. We carried

out an analysis of H3K9m2 within clusters of endogenous siRNAs

defined by massively parallel signature sequencing (MPSS) [51] by

determining how many of those clusters fall within H3K9m2

regions. As expected, the majority of siRNA clusters present in

pericentromeric regions were highly associated with H3K9m2 (90%

or higher overlap), independent of whether the siRNA cluster was

defined as dense, moderate or sparse (Figure 8). However, in the

euchromatic arms of the chromosomes, sparse clusters behaved

differently from the dense/moderate clusters. In particular, while

the percent of H3K9m2 dense clusters stayed relatively high (84%),

the percent of H3K9m2 methylated sparse clusters decreased to

37%. These results indicate that dense siRNA clusters are strongly

associated with H3K9m2, independent of their position in the

genome, while sparse siRNA clusters are not as efficient at recruiting

H3K9m2 in euchromatic arms. These findings also once again

Figure 5. H3K9m2 methylation and expression levels of genes. (a) Histogram of H3K9m2 methylation of genes present in euchromatic arms
(red line) or present in pericentromeric regions (blue bars). X-axis corresponds to average Z-score of each gene and Y-axis is the percent of the genes
falling within each Z-score interval. (b) Expression level of all genes located in pericentromeric regions (green), those that are H3K9m2 methylated
(red) or are unmethylated (blue).
doi:10.1371/journal.pone.0003156.g005

Genome-Wide H3K9m2 Profiling
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underscore the differences between H3K9m2 patterns in pericen-

tromeric heterochromatin relative to euchromatic arms.

Conclusion
We have profiled H3K9m2 methylation across the Arabidopsis

genome and combined the analysis with recently published high-

resolution BS-seq data to understand the relationship between

H3K9m2 and DNA methylation. The H3K9m2 methylation data,

along with repeat annotations and other epigenomic datasets are

available to the community at our local UCSC genome browser

site: http://epigenomics.mcdb.ucla.edu/H3K9m2/

Our bioinformatics analyses, as well as manual inspection of the

data in genome browsers, shows that H3K9m2 and CHG DNA

methylation are very tightly correlated throughout the genome,

showing that the relationship between these two marks may be

universal. These results are consistent with the proposed self-

reinforcing loop mechanism operating between the CHG

methyltransferase (CMT3) and the primary H3K9m2 methyl-

transferase KYP [30]. Our data also show that the CG only

methylation associated with roughly one third of expressed genes is

not correlated with H3K9m2, showing that this type of

methylation is maintained by a different mechanism. Finally, our

data suggest that different mechanisms are operating to maintain

high levels of H3K9m2 in large blocks of pericentromeric

heterochromatin, and smaller patches of H3K9m2 on repeats

and transposons found in the euchromatic arms of the chromo-

somes. Future studies will hopefully uncover the mechanistic

differences between these two patterns of epigenetic silencing.

Methods

Native chromatin immunoprecipitation
The entire shoots of three week old Arabidopsis plants (Col-0

ecotype), grown under continuous light, were harvested, frozen in

liquid nitrogen and ground to powder (1 g). Plant tissue was

resuspended in 10 ml of HBM buffer (25 mM Tris-Cl pH 7.6,

440 mM sucrose, 10 mM MgCl2 and 0.1% Triton-X, 10 mM b-

mercaptoethanol, 2 mM spermine, 1 mM PMSF, 1 ug/ml

pepstatin and EDTA-free protease inhibitor cocktail (Roche),

homogenized and filtered through Miracloth (Calbiochem). After

spinning at 3000 rpm for 5 min (SS-34, Sorvall), the pellet was

resuspended in 5 ml of NIB buffer (20 mM Tris-Cl pH 7.6,

250 mM sucrose, 5 mM MgCl2, 5 mM KCl, 0.1% Triton-X,

10 mM b-mercaptoethanol), applied to a 15/50% Percoll (GE

Healthcare) gradient in NIB and spun 2000 rpm for 20 min (SS-

34, Sorvall). Isolated nuclei were washed two times in NIB buffer

and flash frozen in liquid nitrogen in HBC buffer (25 mM Tris-Cl

pH 7.6, 25 mM Tris-Cl pH 7.6, 440 mM sucrose, 10 mM MgCl2
and 0.1% Triton-X, 10 mM b-mercaptoethanol, 20% glycerol).

Nuclei from 1/5 of each preparation were treated with four ul of

RNAse A, 10 ug/ul, (Qiagen) and used for Micrococcal Nuclease

(Takara) digestion for 6 minutes (final concentration 0.2 U/ul) in

digestion buffer (16 mM Tris-Cl, pH 7.6, 50 mM NaCl, 2.5 mM

CaCl2, 0.01 mM PMSF and EDTA-free protease inhibitor

cocktail (Roche) and stopped with 10 mM EDTA. Mononucleo-

somes were released by treating nuclei with 0.1% Triton-X for 1–

2 hours in the cold, and then pelleting the debris by centrifuging at

3500 rpm for 3 min (Eppendorf, 5415R). 500 ul of supernatant

was applied to 50 ul of Dynabeads Protein A (Invitrogen) that

were preincubated with 2.5 ug of the appropriate antibody

(#1220, monoclonal anti-H3K9m2 antibody, Abcam; #1791,

polyclonal anti-H3 antibody, Abcam) in buffer (20 mM Tris-Cl,

pH 7.6, 50 mM NaCl, 5 mM EDTA and 0.1% Triton) and

incubated overnight. Beads were washed (10 min incubation in the

cold) with 500 ul of the following buffers: 50 mM Tris-Cl pH 7.6,

10 mM EDTA, 0.1 mM PMSF, protease inhibitor cocktail

(Roche) with changing concentration of NaCl to 50 mM,

100 mM and 150 mM, subsequently. Final wash was done in

Figure 6. H3K9m2 methylation of transposable elements. The majority of transposons in pericentromeric regions have high levels of H3K9m2
(blue bars), while a large number of transposons in the arms are unmethylated (red line). X axis represents the average H3K9m2 level (Z-score) for the
element and Y axis represents the percentage of elements falling into each category.
doi:10.1371/journal.pone.0003156.g006
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TE buffer, without incubation and immunocomplexes were eluted

with 500 ul of 0.1% SDS and 0.1 M NaHCO3 at 65uC for

10 min. DNA was then purified using conventional phenol-

chlorophorm extraction and ethanol/salt precipitation. DNA

amplification was performed using the GenomePlexH Whole

Genome Amplification Kit (Sigma). Four amplification reactions

were performed in parallel for each sample to minimize spurious

amplification artifacts and purified using QlAquick spin columns

(Qiagen) and the products were combined. 4–6 ug of DNA was

obtained and Roche Nimblegen performed array hybridization,

Figure 7. H3K9m2 of various repeat elements in the Arabidopsis genome. (a) Percent of H3K9m2 methylated (purple) and unmethylated
repeats (white). The majority of unmethylated repeats are present in euchromatic arms (green), while the majority of methylated repeats are located
in pericentromeric regions (red). (b) Average H3K9m2 levels across tandem, inverted and interspersed repeats present in different genome
compartments. All three kinds of repeats are more frequently methylated and have higher average H3K9m2 levels when they reside in
pericentromeric regions. X axis represents the average H3K9m2 level (Z-score) for the element and Y axis represents the percentage of elements
falling into each category.
doi:10.1371/journal.pone.0003156.g007
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washing and scanning. For the ChIP with crosslinked tissue, a

previously described protocol was used [45].

Microarray design and data analysis
Together with Roche Nimblegen, we designed a forward strand

Arabidopsis whole-genome array which contained ,1.98 million

60-nt oligonucleotide features. Of the ,1.98 million features, a

total number of ,1.87 million features matched a unique position

in the genome. Three biological replicas were performed for the

MNase digested ChIP samples. Each probe was assigned a log of

the ratio between H3K9m2(Cy5) and H3(Cy3) signal. Z-scores

were calculated for each probe by subtracting the mean and

dividing by the standard deviation for the entire array. The Z-

scores for each probe were averaged among three replicas, and the

correlation between replicates was high (Pearson correlation

coefficient between 0.85 and 0.9).

Based on the distribution of Z-scores (Figure S2), we defined a

positive probe as having a score higher than 0.2, which gave a false

positive rate in the chloroplast genome of 1.19%. In order to

eliminate false positive signals from single probes, we defined a set

of ‘‘methylated regions’’ by combining adjacent probes with scores

higher than 0.2, allowing a maximal gap of 120 base pairs, and

minimum run of 60 base pairs by using Integrated Genome

Browser (Affymetrix). This setting allows detection of regions with

a size of a mononucleosome (147 bp), but eliminates signal from

single isolated probes (60 bp).

TAIR7 release of Arabidopsis genome was used for annotations

of genes and transposon/pseudogenes. DNA methylation data is

described in [32]. Positions of tandem, inverted and interspersed

repeats, as well as expression data for gene are based on [39].

siRNA cluster data is based on the study by [51]. The data is

available at http://epigenomics.mcdb.ucla.edu/H3K9m2/. Two tracks

‘H3K9m2MD:ZLrToH3’ and ‘H3K9m2CL:ZLrToH3’ represent

data from native and crosslinked ChIP experiments, respectively.

The default display range of z-scores is 0.0 to 2.0 with a horizontal

line at 1.0. Microarray data reported in the manuscript is

deposited to GEO at NCBI, series accession number GSE12383

(in accordance with MIAME guidelines).

Supporting Information

Figure S1 MNase digestion conditions and specificity of anti-

H3K9m2 antibody. (a) Nuclear DNA digested with MNase for

various periods of time. Six-minute digestion was used for ChIP

assays. (b) Western blot analysis of interaction of anti-H3K9me2

antibody with different methylated peptides.

Found at: doi:10.1371/journal.pone.0003156.s001 (2.93 MB TIF)

Figure S2 Distribution of H3K9m2 levels (Z-scores) for probes

corresponding to each of the five Arabidopsis nuclear chromo-

somes and chloroplast. Histogram shows the distribution of the

numbers of probes relative to their Z-score. Black line (0.2)

indicates the cut off value used for determining H3K9m2 positive

probes.

Found at: doi:10.1371/journal.pone.0003156.s002 (2.06 MB TIF)

Figure S3 Examples of H3K9m2 patterns observed using two

different techniques for chromatin immunoprecipitation, micro-

coccal nuclease digested chromatin (MNase) or crosslinked and

sonicated chromatin (Crosslink). Each gray bar corresponds to the

z-score of an individual probe. Genes are in green and transposons

are in red.

Found at: doi:10.1371/journal.pone.0003156.s003 (3.10 MB TIF)

Figure S4 Correlation of H3K9m2 methylation with CHG

DNA methylation. Examples show the tight association between

H3K9m2 positive regions (represented by grey signal), and CHG

methylation as determined by whole genome bisulfite sequencing.

Bright blue rectangles represent CHG methylation and green and

red rectangles represent CG and CHH methylation respectively.

Found at: doi:10.1371/journal.pone.0003156.s004 (2.65 MB TIF)

Figure S5 Genes are devoid of H3K9m2 and CHG methylation

and have high frequency of CG methylation. Examples show the

lack of association between H3K9m2 positive regions (represented

by grey signal), and CG only methylated regions associated with

the transcribed regions of genes, as determined by whole genome

bisulfite sequencing. Green rectangles represent CG methylation

and blue and red rectangles represent CHG and CHH

methylation respectively.

Found at: doi:10.1371/journal.pone.0003156.s005 (3.24 MB TIF)

Figure S6 Chromosome-wide coordinates for pericentromeric

(dark) and euchromatic arm regions in megabases. Pericentro-

meric regions were assigned based on the distribution of repetitive

elements, genes and DNA methylation across chromosomes.

Found at: doi:10.1371/journal.pone.0003156.s006 (0.33 MB TIF)

Figure S7 Distribution of Z-scores of probes found in pericen-

tromeric regions or euchromatic arms of the chromosomes. Data

was generated by conventional (crosslinked) ChIP.

Found at: doi:10.1371/journal.pone.0003156.s007 (0.39 MB TIF)

Table S1 Regions previously annotated as H3K9m2 methylated

and their overlap with H3K9m2 methylation found in current

study.

Found at: doi:10.1371/journal.pone.0003156.s008 (0.16 MB

XLS)
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