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1 Introduction 
 
During the past few decades, computational methods in protein research focused on 
sequence based analyses.  The growing number of protein sequences accumulated in 
Genbank allowed scientists to ask many questions about how the proteins were 
evolutionarily related.  These methods all relied on sequence comparison algorithms: 
Needleman Wunsch, Smith-Waterman,  BLAST, Hidden Markov Models to name a few 
(1-4).  In general, all these methods allowed scientists to group proteins into families that 
share sequence similarity.   
 
This exercise is very useful to identify the biochemical functions of proteins.  This is due 
to the fact, that as sequences diverge within a family, protein functions can often remain 
intact.  Therefore, the central paradigm has been that if one can identify the function of 
one protein in a family, one can understand the function of many of the other proteins 
within the family as well. 
 
 Although this research has by means been exhausted, in the current era where the entire 
genomes of organisms can be sequenced, the focus of computational biology is gradually 
shifting.  A great deal of research in the past few years has focused on what many 
consider the next grand challenge: now that we know the protein components of cells, 
and understand the biochemical functions of many of them, can we begin to understand 
how these functions are coupled (5).  In other words, the function of each protein depends 
on the concentrations of other molecules within the cell, through a vast network of 
molecular interactions.  Can we begin to elucidate the network of interactions in order to 
predict how modulating the concentrations of one molecular species affect other 
proteins? 
 
Although the general question is still too difficult to tackle, here we present two 
methodologies that begin to ask a more detailed but related question: can we predict the 
pairings of chemokines with their receptors (see Note 1).  Chemokine-receptor pairs are 
of particular interest since they have been extensively studied and a great deal is known 
about them (6,7).  In general, chemokines control diverse biological processes by 
activating G-protein-coupled receptors on the cell surface.  These processes include 
angiogenesis, hematopoesis and organogenesis among many others.  Understanding the 



interactions between chemokines and their receptors can shed a great deal of light on the 
molecular basis of these events. 
 
Here we present two separate methodologies to predict the pairings between chemokines 
and their receptors.  The first method relies on the premise that in certain cases 
chemokines and their receptors will be transcriptionally co-regulated (8).  This may occur 
in cases where the recptor-ligand pairs are part of autocrine signaling loops.  The strategy 
will be to identify which chemokine-receptor pairs are potentially forming autocrine 
loops by finding pairs that are co-regulated using expression microarray data.   
 
The second method attempts to reconstruct chemokine-receptor pairs using phylogeny 
(9).  The central assumption is that the pairs must co-evolve in order to maintain their 
binding specificity.  The method consists of first constructing extensive phylogenetic 
trees to capture the evolutionary distance between members of the chmokine and receptor 
families independently.  By comparing the trees it is possible to demonstrate that they 
share many similarities: ligands that cluster in one tree bind receptors that are clustered in 
the other.  It is therefore possible in principle to identify receptors of orphan ligands using 
this methodology. 
 
 

2 Materials 
 
1. List of known chemokine receptor pairs 
2. Microarray expression data sets 
3. PSI-BLAST 
4. ClustalW 
5. PHYLIP 

3  Methods 
 

3.1 List of Chemokine Receptor Pairs 
 
There are many public databases of protein interactions that contain information on 
chemokine receptor pairs, such as DIP and BIND (10,11).  One of the most 
comprehensive is the Database of Ligand Receptor Pairs (DLRP) (8).  The contents of 
this database may be obtained at http://dip.doe-mbi.ucla.edu/dip/DLRP.cgi.  We list the 
set of pairs in Table I.     
 

3.2 Identifying Co-expressed Chemokine-Receptor Pairs 
 
Relationships between chemokines and their receptors may be uncovered using 
expression data (8).  Below we describe how one may obtain and analyze expression data 



to determine which pairs of ligands and receptors are most likely transcriptionally 
coregulated.   When a receptor-ligand pair is co-expressed in data from one cell tyope this 
indicates that the ligand potentially binds the receptor to form an autocrine loop. 
 
3.2.1 Microarray Expression Datasets 
 
There is a growing wealth of public data on microarray expression experiments.  
Unfortunately, unlike sequence or structure databases, there is not yet a single repository 
for microarray data.  One of the most extensive sources is the Stanford Microarray 
database (http://genome-www5.stanford.edu/MicroArray/SMD/).  This database allows 
users to download expression microarray datasets for human and other organisms.  As of 
the writing of this article there were 18 human datsests available, ranging over a wide 
variety of tissue types, including cancerous tissues. 
 
3.2.2 Correlations in Expression between Chemokines and their Receptors 
 
The first step to establish that a chemokine and its receptor are expressed in a correlated 
fashion is to extract the values of the expression intensities for each across a dataset.  
Expression values are usually measured as absolute intensities or as log ratios.  In either 
case the correlation between the measured values of two genes across multiple 
experiments may be computed using the Pearson correlation coefficient: 
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where C is the correlation coefficient, xi  are the values of gene x in experiment i, x is the 
average value of gene x across all the experiments and yi are the values measured for gene 
y (see Note 2). 
 
3.2.3 Estimating the Statistical Significance of the Correlation 
 
The correlations computed in the previous section are useful for rank ordering 
chemokine-receptor pairs according to the likelihood that they are co-regulated.  
However, it is important to assess the probability that the pair is actually co-expressed.  
One method to accomplish this is to ask what the probability of observing the above 
correlation is from the distribution of correlations between all the pairings of the genes on 
the microarray.  This distribution usually takes the form of a Gaussian distribution.  An 
example of this distribution is seen in figure 1.  Once the distribution is computed, one 
can calculate the fraction of pairs that have a greater pairwise correlation than the one 
observed for the specific chemokine-receptor pair.  This probability is a measure of the 
likelihood of observing the correlation by chance, and hence allows us to gauge whether 
the observation is meaningful.  
 
3.2.4 Coexpressed Chemokine-Receptor Pairs 
 



In Table II  we list the most significantly coexpressed chemokine-receptor pairs from 
Graeber et.al. (8).  The expression data came form a leukemia dataset generated at the  
Whitehead/MIT Center for Genome Research (http://waldo.wi.mit.edu/ 
MPR/) (14).  Among this list are known chemokine-receptor pairs that might be involved 
in autocrine signaling loops.   

3.3 Identifying Co-Evolving Chemokine-Receptor Pairs 
 
Relationships between chemokines and their receptors may also be determined using 
phylogenetic techniques (9).  The underlying assumption is that if a ligand and its 
receptor are to maintain a high affinity for each other as they evolve subject to point 
mutations, the preserved mutations must be correlated between the two.  That is, it is 
likely that a mutation in the receptor binding-site is conserved only if a compensating 
mutation is made on the ligand’s epitope.  Therefore if we capture the degree of evolution 
that occurs among chemokine receptors in a phylogenetic tree, it is likely to mirror the 
tree produced from the chemokines that bind these receptors.  The mate of an orphan 
receptor or chemokine may be inferred from a comparison of the two trees. 
 
3.3.1 Constructing Phylogenetic Trees 
 
To construct phylogenetic trees we have used the program CLUSTALW (12).  The 
program is available on the web at http://www.ebi.ac.uk/clustalw/.  The program takes as 
an input a list of sequences.  We have constructed such a list for the receptors and the 
ligands listed in Table I.  The sequences must be in the FASTA format as seen in Figure 
2.  The list of sequences may then be submitted to the program though a web form or, if 
the program is downloaded, though a command line prompt.  CLUSTALW allows the 
user to alter many parameters that affect the topology of the phylogenetic tree, but a 
detailed discussion of these parameters is beyond the scope of this work.  To generate the 
trees in Figures 3 and 4 we used the default parameters (see Note 3).  With these 
parameters the program generates a phylogentic tree in the standard “New Hampshire” 
format. 
 
3.3.2 Displaying the Phylogenetic Tree 
 
The phylogenetic tree that is produced by CLUSTALW may be displayed using the 
program PHYLIP (13).  PHYLIP is a suite of programs for phylogentic and sequence 
analysis.  We have used the program DrawTree from this suite to generate Figures 3 and 
4.  This program takes as its input a phylogenetic tree in the standard “New Hampshire” 
format, generated for example by CLUSTALW, and generates an unrooted tree.  The 
program allows the user to alter parameters that modify the appearance of the unrooted 
tree, such as the font and direction of the labels. 
 
3.3.3 Comparing the Chemokine Receptor and Chemokine Phylogentic Trees 
 
The phylogenetic tree for the chemokine receptors is illustrated in figure 3, while that for 
the chemokines is in figure 4.  In the chemokine tree, each leaf is labeled not only by the 



chemokine name, but also by the receptors that the chemokine binds.  As is evident form 
the figure, there are more chemokines than receptors and therefore the chemokine tree is 
inherently more complex.   At first site there is not much evidence that the two trees are 
in any way correlated, however, upon closer inspection one notices some similarities.  
For instance the chemokines that bind CCR1, CCR3 and CCR8 form a tight cluster in the 
chemokine tree.  Similarly, CCR1, CCR3 and CCR8 also form a tight cluster in the 
receptor tree.  Similarly, all the ligands for ILR8 and CXCR4 form a tight cluster in the 
chemokine tree, while the receptors ILR8 and CXCR4 are close by on the receptor tree.  
Other similarities can be found between the trees of the receptors and the ligands even 
though there are many relationships that do not hold up.  For instance, the chemokines 
that bind GPR9 and CCR6 are nearby on the chemokine tree but their receptors are not 
close by on the receptor tree. 
 Given the level correspondence between the ligand and receptor phylogenetic 
trees, it should be possible in some cases to identify the receptor of an orphan ligand and 
vice versa.  To do this one would identify the position of the orphan ligand on the 
chemokine tree and look to see which receptors are bound by ligands nearby on this tree.  
Although this would certainly not identify with high confidence the receptor of an orphan 
ligand, it could certainly provide valuable clues that could be verified experimentally. 
 
3.3.4 Determining the Statistical Significance of the Correspondence between two 
Trees 
 
Is the observation that the chemokine tree and the chemokine receptor tree show 
similarities statistically significant?  If we were to generate many phylogenetic trees at 
random would we find that they were more or less similar than the actual trees of the 
chemokines and chemokine receptors? 
 One can answer these questions by comparing the distance matrices associated 
with each phylogenetic tree.  The distance matrices may be output by the command line 
version of the CLUSTALW program with the appropriate settings.  The distance matrix 
is what the program actually uses to calculate the phylogentic tree, and is an intermediate 
representation of the data between the multiple alignment of the input sequences and the 
final tree.  The distance matrix contains all the pairwise distances between the input 
sequences to CLUSTALW; in our case the sequences of the chemokines or the receptors.  
Distances are a measure the evolutionary time of divergence between two sequences.   

  To compare two distances matrices one must look at the correlation between the 
distances of pairs of receptors and pairs of the associated chemokines.  One may then 
calculate the correlations between these pairs of distances using the formula of section 
3.2.2.  This correlation is then compared to the correlations that one observes when pairs 
of receptors are randomly associated with pairs of ligands.  One must calculate the 
distribution of correlations for the random couplings of receptors and ligands, and 
determine how many standard deviations from the mean the correlation for the true 
couplings is.  The greater the number of standard deviations from the mean, the more 
significant is the similarity between the receptor and ligand tree.  For instance, the 
correlation between the chemokine and chemokine receptor tree calculated by Goh et. al. 
is 0.44, while the standard deviation from the mean of randomly paired trees is 11.2.  The 



probability of observing this correlation by chance from the random distribution is 2.3 x 
10-29, therefore the trees are far more similar than one would expect by chance. 

 

4 Notes 
 

1. Interactions between proteins, as in the case of ligand-receptor associations, occur 
over a broad range of affinities.  The strongest protein-protein associations have 
equilibrium constants in the nanomolar range, while weaker, yet still biologically 
important ones, have constants in the micromolar range.  This broad range of 
affinities complicates any attempts to predict protein interactions from expression 
or protein sequence data.  One should consider only interactions that have a 
measurable biological outcome, although it is difficult to determine how to do this 
in many cases. 

2. The correlation coefficients that one calculates between genes based on their 
expression levels measured across multiple experiments are critically dependent 
on the nature of the experiments.  Therefore one should not always expect to 
observe the same correlations between genes measured for instance in a set of 
cancerous cells versus a set of tissues from normal cells.  One should not always 
expect the observation of a significant correlation to be tissue independent. 

3. The construction of phylogenetic trees is very sensitive to the particular 
methodology used.  There is no optimal procedure for constructing multiple 
alignments between all the input sequences as this critical first step depends on 
the substitution matrix, the alignments parameters, the gap parameters and the 
multiple sequence algorithm used.  There are also a variety of methodologies to 
compute distance matrices from a multiple sequence alignment, each one yielding 
slightly different results.  Finally a tree is an approximate and non-optimal 
representation of a distance matrix, and therefore each tree-building algorithm 
yields somewhat different results.  Nonetheless, the information captured in a 
phylogenetic tree is an extremely useful and often robust representation of the 
evolutionary relationships between protein sequences. 
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Table I : Chemokine-Receptor Pairs* 
 

Ligand Receptor 
SCYA18 

 small inducible cytokine subfamily A (Cys-Cys), member 18, 
pulmonary and activation-regulated 

  

CCR3 chemokine (C-C motif) receptor 3 
GPR9 G protein-coupled receptor 9 (weak) 

CCR5 chemokine (C-C motif) receptor 5 (weak) 

SCYA11 
small inducible cytokine subfamily A (Cys-Cys), member 11 

(eotaxin) 
CCBP2 chemokine binding protein 2 (weak) 

SCYA24 
 small inducible cytokine subfamily A (Cys-Cys), member 24 CCR3 chemokine (C-C motif) receptor 3 

SCYA23 
 small inducible cytokine subfamily A (Cys-Cys), member 23 CCR1 chemokine (C-C motif) receptor 1 

CCR1 chemokine (C-C motif) receptor 1 SCYA14 
 small inducible cytokine subfamily A (Cys-Cys), member 14 CCBP2 chemokine binding protein 2 

SCYA16 
 small inducible cytokine subfamily A (Cys-Cys), member 16   

SCYA26 
 small inducible cytokine subfamily A (Cys-Cys), member 2 CCR3 chemokine (C-C motif) receptor 3 

CCR1 chemokine (C-C motif) receptor 1 SCYA3 
 small inducible cytokine A3 (homologous to mouse Mip-1a) CCR5 chemokine (C-C motif) receptor 5 

CCR5 chemokine (C-C motif) receptor 5 
CCR8 chemokine (C-C motif) receptor 8 (weak) 
CCR1 chemokine (C-C motif) receptor 1 (weak) 

SCYA4 
 small inducible cytokine A4 (homologous to mouse Mip-1b) 

CCBP2 chemokine binding protein 2 
CCR1 chemokine (C-C motif) receptor 1 SCYA15 

 small inducible cytokine subfamily A (Cys-Cys), member 15 CCR3 chemokine (C-C motif) receptor 3 
SCYA1 

 small inducible cytokine A1 (I-309, homologous to mouse Tca-3) CCR8 chemokine (C-C motif) receptor 8 

CCR7 chemokine (C-C motif) receptor 7 SCYA21 
 small inducible cytokine subfamily A (Cys-Cys), member 21 GPR9 G protein-coupled receptor 9 (weak) 

CCR1 chemokine (C-C motif) receptor 1 
CCR3 chemokine (C-C motif) receptor 3 
CCR4  chemokine (C-C motif) receptor 4 
CCR5 chemokine (C-C motif) receptor 5 
FY Duffy blood group (non-signalling) 

SCYA5 
 small inducible cytokine A5 (RANTES) 

CCBP2 chemokine binding protein 2 
CCR2 chemokine (C-C motif) receptor 2 
FY Duffy blood group (non-signalling) 

CCR1  chemokine (C-C motif) receptor 1 (weak) 

SCYA2 
 small inducible cytokine A2 (monocyte chemotactic protein 1, 

homologous to mouse Sig-je) 
CCBP2 chemokine binding protein 2 

CCR2 chemokine (C-C motif) receptor 2 
CCR3 chemokine (C-C motif) receptor 3 
CCR5 chemokine (C-C motif) receptor 5 
CCR1 chemokine (C-C motif) receptor 1 

SCYA8 
 small inducible cytokine subfamily A (Cys-Cys), member 8 

(monocyte chemotactic protein 2) 

CCBP2 chemokine binding protein 2 
SCYA27 

 small inducible cytokine subfamily A (Cys-Cys), member 27 GPR2 G protein-coupled receptor 2 

CCR1 chemokine (C-C motif) receptor 1 
CCR2 chemokine (C-C motif) receptor 2 
CCR3 chemokine (C-C motif) receptor 3 

SCYA7 
 small inducible cytokine A7 (monocyte chemotactic protein 3) 

CCR5 chemokine (C-C motif) receptor 5 (antagonist) 



 CCBP2 chemokine binding protein 2 (weak) 
CCR2 chemokine (C-C motif) receptor  

CCR3 chemokine (C-C motif) receptor 3 
CCR1 chemokine (C-C motif) receptor 1 

CCR5 chemokine (C-C motif) receptor 5 (weak) 

SCYA13 
 small inducible cytokine subfamily A (Cys-Cys), member 13 

CCBP2 chemokine binding protein 2 
CCR4 chemokine (C-C motif) receptor 4 SCYA17 

 small inducible cytokine subfamily A (Cys-Cys), member 17 CCR8 chemokine (C-C motif) receptor 8 (weak) 
SCYA20 

 small inducible cytokine subfamily A (Cys-Cys), member 20 CCR6 chemokine (C-C motif) receptor 6 

SCYA19 
 small inducible cytokine subfamily A (Cys-Cys), member 19 CCR7 chemokine (C-C motif) receptor 7 

SCYA25 
 small inducible cytokine subfamily A (Cys-Cys), member 25 CCR9 chemokine (C-C motif) receptor 9 

SCYA22 
 small inducible cytokine subfamily A (Cys-Cys), member 22 CCR4 chemokine (C-C motif) receptor 4 

IL8RA interleukin 8 receptor, alpha 
IL8RB interleukin 8 receptor, beta 

IL8 
 interleukin 8 

FY Duffy blood group (non-signalling) 
IL8RA interleukin 8 receptor, alpha SCYB6 

 small inducible cytokine subfamily B (Cys-X-Cys), member 6 
(granulocyte chemotactic protein 2) IL8RB interleukin 8 receptor, beta 

MIG 
 monokine induced by gamma interferon GPR9 G protein-coupled receptor 9 

SDF1 
 stromal cell-derived factor 1 CXCR4 chemokine (C-X-C motif), receptor 4 (fusin) 

SCYB11 
 small inducible cytokine subfamily B (Cys-X-Cys), member 11 GPR9 G protein-coupled receptor 9 

PF4 
 platelet factor 4   

IL8RB interleukin 8 receptor, beta SCYB5 
 small inducible cytokine subfamily B (Cys-X-Cys), member 5 

(epithelial-derived neutrophil-activating peptide 78) IL8RA interleukin 8 receptor, alpha (weak) 

SCYB10 
 small inducible cytokine subfamily B (Cys-X-Cys), member 10 GPR9 G protein-coupled receptor 9 

IL8RB interleukin 8 receptor, beta PPBP 
 pro-platelet basic protein (includes platelet basic protein, beta-

thromboglobulin, connective tissue-activating peptide III, 
neutrophil-activating peptide-2) 

FY Duffy blood group (non-signalling) 

IL8RB interleukin 8 receptor, beta GRO1 
 GRO1 oncogene (melanoma growth stimulating activity, alpha) FY Duffy blood group (non-signalling) 

GRO2 oncogene IL8RB interleukin 8 receptor, beta 
 GRO3 oncogene IL8RB interleukin 8 receptor, beta 

SCYB13 
 small inducible cytokine B subfamily (Cys-X-Cys motif), member 

13 (B-cell chemoattractant) 
BLR1 Burkitt lymphoma receptor 1, GTP-binding protein 

SCYB14 
 small inducible cytokine subfamily B (Cys-X-Cys), member 14 

(BRAK) 
  

SCYC1 
 small inducible cytokine subfamily C, member 1 (lymphotactin) CCXCR1 chemokine (C motif) XC receptor 1 

SCYC2 
 small inducible cytokine subfamily C, member 2 CCXCR1 chemokine (C motif) XC receptor 1 

SCYD1 
 small inducible cytokine subfamily D (Cys-X3-Cys), member 1 

(fractalkine, neurotactin) 
CX3CR1 chemokine (C-X3-C) receptor 1 

 
 



*This list is obtained from DLRP (8) 



 
 
Table II: Co-expressed Chemokine Receptor Pairs 
 
Chemokine Receptor Correlation P 

CCL2 FY 0.7 0.0014 
CCL4 CCR5 0.61 0.0086 
FGF4 FGFR2 0.54 0.022 

EFNB1 EPHB4 0.51 0.032 
IL10 IL10RA 0.48 0.043 
CCL8 CCR5 0.47 0.048 

      JAG1 NOTCH4 0.34 0.15 
 



 
Figure 1: Typical distribution of correlations between all pairs of genes within a 
microarray expression dataset.  In this case the correlations are computed between all the 
pairs of yeast genes in about 300 microarray experiments obtained from the Stanford 
Microarray database. 
 
Figure 2: Chemokine receptor sequences in the FASTA format used by the program 
CLUSTALW to construct phylogentic trees. 
 
Figure 3: Phylogenetic tree of chemokine receptors.  The tree was computed using the 
sequences of the receptors listed in Table I, using the program CLUSTALW and 
displayed using the program DrawTree from the PHYLIP package. 
 
Figure 4: Phylogenetic tree of chemokines.  The tree was computed using the sequences 
of the chemokines listed in Table I, using the program CLUSTALW and displayed using 
the program DrawTree from the PHYLIP package.  Next to each chemokine, we list its 
receptors. 
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