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Computational methods for protein function analysis

Matteo Pellegrini

Two recent advances have had the greatest impact on protein
function analysis so far: the complete sequences of genomes
and mRNA expression level profiles. The former has spurred
the development of novel techniques to study protein function:
phylogenetic profiles and gene clusters. The latter has
introduced a method, not based on sequence homology, that
enables one to group together functionally related genes.
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Introduction

Computational methods used to analyze protein function
can be divided into three broad categories: alignment,
genome and expression methods. Alignment methods rely
directly on the similarity of amino acid sequences between
proteins. These methods are by far the most developed in
the field of bioinformatics, but the bulk of the development
has occurred over the past two decades. Recent innovations
in alignment methods have had less impact than the intro-
duction of genome and expression methods over the past
two years. Nevertheless, a few alignment-method innova-
tions will be included in this review, such as indirect
homologies, graph-based analysis and Baysian alignments.

Genome-based methods exploit the information contained
within the full sequence of an organism’s genome. As this
review is being written, approximately sixty complete
genomes are available for analysis. The bulk of these come
from bacteria and archaebacteria. The first eukaryotic
genomes, from yeast, fruit fly and Caenorhabditis elegans, are
also available. The human genome will also soon be com-
pleted. The methods covered in this review include
phylogenetic profile analysis, which searches for the
absence or presence of gene families across organisms, and
gene neighbor analysis, which searches for gene pairs
whose proximity on the genome is preserved across
species. Gene neighbor analysis allows one to partially
reconstruct the components of operons within bacteria.

The third category of computational methods utilizes the
information from mRNA profiling experiments. mRNA
concentrations of each expressed gene within a cell may be
measured by direct sequencing or by spotting arrays of
genes and measuring hybridization through fluorescence.
"Iypically, these experiments may be repeated multiple
times with only small modifications to the cell, to see how
expression levels are perturbed by external stimuli. Once
this data is collected, it is usually clustered into sets of genes

with similar expression levels across multiple experiments.
These clustered genes often share some common function-
al properties, and so this technique may be used to infer the
function of the clustered genes. However, these techniques
are likely to be more useful in elucidating transcriptional
regulation within a cell, rather than protein function.

Alignment methods

Methods that align the sequences of amino acids in pro-
teins have been developed over the past few decades [1,2].
The most commonly used method to date is probably
BLAST [3]. This allows users to rapidly search for homolo-
gous sequences in large protein databases. Searching a
protein sequence against the full protein-sequence data-
base requires less than a minute on a typical computer.

More sensitive and accurate alignment protocols have also
been developed. For instance, hidden Markov models for
protein families are able to detect remote homologs that
may be missed by simple sequence alignment techniques
[4]. These models have been created for most protein fam-
ilies and are compiled within the PFAM database [5]. More
recently, Bayesian statistics have been applied to rigorous-
ly compute optimal alignments [6]. In general, however,
these approaches are extremely computationally intensive,
and thus not applicable to all homology searches.

A newer approach is to extract additional information from
the rapid alignments produced by BLAST. For instance, one
common goal is to extend alignments to recognize distant
homologs. This has been accomplished, in part, by using
transitive sequence comparisons [7,8]. Each sequence may
be homologous to several hundred others. These in turn
may be homologous to other sequences not in the original
set. It is reasonable to postulate that the original query pro-
tein is also homologous to the homologs of its homologs.
Several researchers have shown that such a procedure may
reveal a distant relationship between proteins that are
known to be structurally similar that could not be found by
conventional alignment techniques.

Figure 1

Protein 1 Protein 2

'Rosetta Stone' protein

|—

Current Opinion in Chemical Biology

A ‘Rosetta Stone’ protein is shown schematically as the fusion of two
independent proteins (protein 1 and protein 2).
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In a similar manner, BLAST alignments have been used to
search for protein fusions [9°%,10]. In this technique, one
seeks two proteins, which are not homologous to each
other, that align to different regions of a third protein. In
other words, these two proteins are essentially fused into a
single, longer polypeptide chain. The longer protein has
been dubbed the ‘Rosetta Stone’ protein, because it often
reveals that the two fused protein are interacting or func-
tionally related (see Figure 1).

Graph analysis applied to databases of alignments enables
one to rapidly cluster protein families and decompose pro-
teins into their respective domains [11°]. In the future,
these techniques will probably be used to rapidly annotate
the growing populations of proteins.

Phylogenetic analysis can sometimes be used to deduce the
function of a protein in more detail [12]. The phylogenetic

tree of a protein family may reveal that a single family in fact
clusters into several subfamilies. The members of different
subfamilies often have distinct functions within a cell.
Phylogenetic trees have also been utilized creatively to
match proteins with their interaction partners [13°], assum-
ing that the two must have co-evolved.

Genomic methods

Over the past few years, the number of fully sequenced
genomes has grown dramatically. The analysis of this data is
already yielding significant information about protein func-
tion. At the simplest level, it is now possible to classify
proteins into orthologous groups [14,15]. This graph-based
analysis constructs highly connected sets of orthologous pro-
teins, which are then classified according to their function.

From the analysis of orthologs across genomes it is also
possible to construct phylogenetic profiles [16°°]. These
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A schematic of the position of three genes (shown as black, dark gray
and light gray circles) and their homologs across four genomes. The
figure illustrates that the genes shown in black and dark gray are found
nearby on multiple genomes and therefore are likely to have related
functions. In contrast, the position of the light gray gene does not
correlate strongly with that of the black and dark gray genes, and
therefore probably has an unrelated function.

are typically binary arrays constructed for each protein that
encode whether a homolog of the protein is present in any
of the fully sequenced genomes (see Figure 2). It has been
shown that proteins with similar phylogenetic profiles are
often members of the same protein complex or cellular
pathway. Thus, these profiles may be used to assign
approximate functions to proteins that are not homologous
to characterized proteins.

A similar approach utilizes the positions of genes on the
genome [17,18,19°°]. If two genes are found nearby in mul-
tiple genomes, it is likely that they are members of a
conserved operon (see Figure 3). Once again, one is able to
use this information to group together genes that are like-
ly to be part of a single pathway or complex and thus
extract functional information for genes that have not been
characterized. It has been shown that such an analysis,
when combined with conventional homology-based meth-
ods, yields functional information on the vast majority of
genes encoded in newly sequenced genomes [20].

As a result of these and related techniques, it has become
possible to precisely describe the operon organization of
Escherichia coli [21]. In the near future, this in-depth tran-
scriptional knowledge is likely to be deciphered for all
fully sequenced microbes.

Expression methods

As a result of remarkable developments during the past
few years, it is now possible to measure the concentrations
of every mRNA within a cell. There are two primary ways
to accomplish this. The first is by sequencing the mRNA
[22,23] and counting the number of copies of a particular
gene. The second is by hybridizing the mRNA to comple-
mentary sequences that are attached to a chip, and then
estimating the concentrations by fluorescence [24].

"Typically, the expression levels of the genes within a cell
are measured under varying conditions. For instance, one
may measure the concentrations of yeast genes at different
times during the cell-division cycle [25,26]. The result is

that each gene has an associated expression vector that
measures its concentrations in the cell during a time series.
These vectors may then be clustered. It was found that
genes that cluster together are likely to have similar func-
tions. Therefore, gene expression clustering may be used
similarly to phylogenetic profiles to assign approximate
functions to all the genes within a cell by assuming that co-
clustered genes often have similar functions.

Instead of measuring varying mRNA concentrations dur-
ing cellular cycles, it is also possible to induce expression
changes by adding specific compounds to a cell, or
knocking out a gene [27°,28]. This method probes the
response of specific genes to external stimuli and more
directly infers that the function of the varying genes
relates to the stimulus.

The above discussion has concentrated on yeast, but
similar methods may also be effectively applied to multi-
cellular organisms. In this case, one may ask whether two
genes are expressed within the same tissues of a certain
organism [29,30]. Co-occurring genes are likely to be func-
tionally related, or possibly interacting. In one study, genes
associated with prostate cancer were grouped using this
technique ([29]; Figure 4).

Clearly, the ability to measure all gene expression levels
within a cell offers biologists an entirely new approach to
studying the cellular functions of proteins without relying
on sequence homology. These methods more directly
probe transcriptional regulation, however, and may there-
fore be used to reconstruct transcriptional networks. In
particular, one may use this data to reconstruct the com-
mon upstream DNA motifs that effect transcriptional
regulation among co-expressed genes [31°].

Combined methods

The methods described above exploit different properties
of proteins to gain functional insights. Often, these proper-
ties generate information on different sets of proteins. It is
therefore useful to combine these methods to gain a more
complete picture of protein function [32-36].

One recent approach to combining these methods treats
every prediction as a link between two proteins [37°]. That
is, proteins are linked if they have similar phylogenetic
profiles or expression profiles, or if they are neighbors on
multiple genomes or if they are fused within a Rosetta
Stone protein. By studying the graph of links for yeast, it is
possible to infer approximate functions for most of the
uncharacterized genes coded by this genome.

Another approach combines the phylogenetic profiles and
expression profiles into a single data structure [38]. Using
support vector machines, the authors show that these com-
bined data structures are able to recover functional
information for a greater number of genes than any one of
the methods alone.
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Different cell types express different sets of

genes. By clustering together genes that are
always expressed together in multiple cells we
can often infer a functional coupling between
the encoded proteins. The process of
deducing functional links between proteins is
shown schematically for three different cell
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Conclusion P2 and P7 are functionally linked

P3 and P6 are functionally linked

Conclusions

The advent of whole-genome sequencing and mRNA pro-
filing, has created new opportunities for computational
biologists. It is now possible to utilize information from
comparative genome analysis to reconstruct a protein’s
evolution, and hence gain insights into its function. The
ability to probe the expression levels of every gene within
a genome is also revolutionizing our ability to understand
transcriptional regulation, which also allows us to gain
insights on protein function.

In the near future, these insights will be used by computa-
tional biologists to model cellular pathways in great detail
[39]. It is already possible to begin to model developmental
pathways [40] and metabolic pathways [41°], and compare the
predictions of these models to experimental results. In the
next few years, there will undoubtedly be exciting new
approaches that combine genome-wide experimental

measurements with complex mathematical modeling to gain
an unprecedented understanding of cellular biology.
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