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antibody fusion protein targeting the transferri
We previously developed an antibody-avidin fusion protein (ch128.1Av) that targets the human transfer-
rin receptor 1 (TfR1) and exhibits direct cytotoxicity against malignant B cells in an iron-dependent man-
ner. ch128.1Av is also a delivery system and its conjugation with biotinylated saporin (b-SO6), a plant
ribosome-inactivating toxin, results in a dramatic iron-independent cytotoxicity, both in malignant cells
that are sensitive or resistant to ch128.1Av alone, in which the toxin effectively inhibits protein synthesis
and triggers caspase activation. We have now found that the ch128.1Av/b-SO6 complex induces a tran-
scriptional response consistent with oxidative stress and DNA damage, a response that is not observed
with ch128.1Av alone. Furthermore, we show that the antioxidant N-acetylcysteine partially blocks
saporin-induced apoptosis suggesting that oxidative stress contributes to DNA damage and ultimately
saporin-induced cell death. Interestingly, the toxin was detected in nuclear extracts by immunoblotting,
suggesting the possibility that saporin might induce direct DNA damage. However, confocal microscopy
did not show a clear and consistent pattern of intranuclear localization. Finally, using the long-term
culture-initiating cell assay we found that ch128.1Av/b-SO6 is not toxic to normal human hematopoietic
stem cells suggesting that this critical cell population would be preserved in therapeutic interventions
using this immunotoxin.

� 2012 Published by Elsevier Ltd.
47

48

53
1. Introduction (Lombardi et al., 2010). It is a Type I RIP in that it consists of a sin-

54

55

56
Saporin is a ribosome-inactivating protein (RIP) isolated from
the plant Saponaria officinalis that strongly blocks protein synthesis
Elsevier Ltd.

, bicinchoninic acid; BFU-e, burs
l specificity protein tyrosine phosp
.1Av, mouse/human chimeric anti

-three domain containing 1; GADD
; HRP, horseradish peroxidase; kD
myeloma; mw, molecular weight;

uantitative polymerase chain react
box binding protein; Tf, transferri
e zipper (TFGb-stimulated clone 2
al Oncology, Department of Surger
75.
niels-Wells).

istry, University of Buenos Aires, Bu

, T.R., et al. Insights into the me
n receptor 1. Toxicol. in Vitro (
gle catalytic polypeptide chain and lacks a cell-binding chain. It has
similar catalytic activity to that of ricin, a Type II RIP that consists
of both the catalytic and cell-binding domains (de Virgilio et al.,
t forming unit-erythroid; BHLHB2, basic-helix-loop-helix transcription factor B2;
hatase family; CFU-e, colony forming unit-erythroid; CFU-GM, colony forming unit-
body avidin fusion protein targeting CD71; DNS, dansyl hapten (5-dimethylamino

45B, growth arrest DNA damage-inducible gene 45b; GAPDH, glyceraldehyde 3-
a, kilodlatons; KLF6, Kruppel-like transcription factor 6; LFC, log base 2-fold change;
NAC, N-acetylcysteine; NFKBIE, NF-jB, inhibitor epsilon (IjBe); NHL, non-Hodgkin’s

ion; RGS1, regulator of G-protin signaling; RIP, ribosomal-inactivating protein; ROS,
n; TfR1, transferrin receptor 1 (also known as CD71); THUMD2, THUMP domain
2 domain); TXNIP, thioredoxin interacting protein.
y, UCLA, 10833 Le Conte Avenue, CHS 54-140, Box 951782, Los Angeles, CA 90095-

enos Aires, Argentina.

chanism of cell death induced by saporin delivered into cancer cells by an
2012), http://dx.doi.org/10.1016/j.tiv.2012.10.006

http://dx.doi.org/10.1016/j.tiv.2012.10.006
mailto:tdaniels@mednet.ucla.edu
http://dx.doi.org/10.1016/j.tiv.2012.10.006
http://www.sciencedirect.com/science/journal/08872333
http://www.elsevier.com/locate/toxinvit
http://dx.doi.org/10.1016/j.tiv.2012.10.006


57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

2 T.R. Daniels-Wells et al. / Toxicology in Vitro xxx (2012) xxx–xxx

TIV 2972 No. of Pages 12, Model 5G

24 October 2012
2010). RIPs are N-glycosidases that depurinate specific adenine
residues of the 23S/25S/28S ribosomal subunits leading to the irre-
versible block in protein synthesis. Saporin has also been reported
to have DNase-like activity (Gasperi-Campani et al., 2005; Ron-
cuzzi and Gasperi-Campani, 1996), although this is controversial
(Lombardi et al., 2010). It has also been reported that the glycosi-
dase activity of saporin is not required for its cytotoxicity (Cimini
et al., 2011; Sikriwal et al., 2008). There are several isoforms of
saporin that have been identified and named based on the tissue
of origin and chromatographic peak in ion-exchange chromatogra-
phy (Lombardi et al., 2010). Saporin-6 (SO6), one of the most active
forms of the toxin, is produced in the seeds of the plant and repre-
sents the major peak (peak 6) in chromatography analysis of seed
extracts (Lombardi et al., 2010). This peak contains up to 4 differ-
ent isoforms of the toxin that has either an aspartic or glutamic
acid residue in position 48 and either a lysine or arginine residue
at position 91. Due to its high cytotoxicity, high stability and resis-
tance to denaturation (Santanche et al., 1997), and inability to
readily enter cells, saporin is a promising therapeutic agent for
delivery into cancer cells.

An antibody-avidin fusion protein (ch128.1Av) was previously
produced as a delivery system for a broad range of biotinylated ther-
apeutic agents, such as SO6, into cancer cells (Daniels et al., 2007; Ng
et al., 2002, 2006). This fusion protein contains avidin genetically
fused to the CH3 domains of the human IgG3 heavy chains. The anti-
body is specific for the human transferrin receptor 1 (TfR1, also
known as CD71) and does not compete with the endogenous ligand
transferrin (Tf) for receptor binding (Ng et al., 2006; Rodriguez et al.,
2007). The TfR1 is a Type II transmembrane homodimeric protein
involved in iron uptake and regulation of cell growth (Daniels et
al., 2006b). It is widely expressed at low levels on many cell types,
but shows increased expression on rapidly dividing cells including
malignant cells due to their increased need for iron (Daniels et al.,
2006b). Because of its central role in cancer pathology, its accessibil-
ity on the cell surface, and its ability to internalize through receptor-
mediated endocytosis, the TfR1 has been used for the targeted deliv-
ery of numerous different therapeutic agents into cancer cells (Dan-
iels et al., 2012, 2006a). The TfR1 can be targeted in two ways, either
through the use of conjugates containing Tf, or through the use of
antibodies like ch128.1Av. In addition to its delivery potential,
ch128.1Av is cytotoxic to certain human malignant B cells, includ-
ing multiple myeloma (MM) and non-Hodgkin’s lymphoma (NHL)
cells (Ng et al., 2002, 2006; Ortiz-Sanchez et al., 2009), an activity
that is higher compared to that of its parental antibody (ch128.1)
without avidin (Daniels et al., 2011; Ng et al., 2006). This activity
is due to an alteration in the TfR cycling pathway, increased TfR deg-
radation, and the induction of lethal iron starvation in sensitive cells
(Daniels et al., 2007; Ng et al., 2006; Rodriguez et al., 2011). How-
ever, both ch128.1Av and its parental antibody demonstrated
in vivo anti-cancer activity in two xenograft mouse models of dis-
seminated human MM (Daniels et al., 2011). Taken together,
ch128.1Av is a versatile approach for the treatment of B-cell malig-
nancies in that it can be directly cytotoxic through the disruption of
iron metabolism or it can be used as a universal delivery system for
many therapeutic agents.

Previously we have shown that ch128.1Av delivers the active
b-SO6 toxin into human malignant B cells resulting in protein syn-
thesis inhibition, caspase activation (especially caspases 2 and 3),
and the induction of apoptosis in both cells that are sensitive to
the fusion protein alone and those that are resistant (Daniels et
al., 2007). The cytotoxicity of b-SO6 conjugated to ch128.1Av in
cells that are sensitive to the direct effects of ch128.1Av occurs
much faster than that of the ch128.1Av alone. Additionally, the
cytotoxicity of the conjugate could not be blocked by the addition
of excess iron (Daniels et al., 2007), indicating that in contrast to
ch128.1Av alone, iron starvation does not play a role in this cell
Please cite this article in press as: Daniels-Wells, T.R., et al. Insights into the me
antibody fusion protein targeting the transferrin receptor 1. Toxicol. in Vitro (
death. These data suggest that the death induced by the conjugate
is exclusively mediated by the toxin and not the direct cytotoxic ef-
fects of the fusion protein. A previous report on the gene expres-
sion analysis of ch128.1Av alone showed a transcriptional
response consistent with iron deprivation mediated in part by
p53 (Rodriguez et al., 2011). We now show that the ch128.1Av/
b-SO6 immunotoxin induces a different transcriptional response,
which is consistent with the induction of oxidative stress and
DNA damage. The induction of lethal oxidative stress was con-
firmed through the analysis of cell death in the presence of an anti-
oxidant. In addition, we have conducted studies that suggest
nuclear localization of the toxin. Finally, we found that
ch128.1Av/b-SO6 does not show toxicity to normal human hema-
topoietic stem cells or non-committed (early) progenitor cells.
2. Materials and methods

2.1. Cell lines

IM-9 (a human EBV-transformed B-lymphoblastoid cell line)
and U266 (a human MM cell line) were purchased from the Amer-
ican Type Culture Collection (ATCC, Manassas, VA). Both malignant
B-cell lines were grown in RPMI 1640 medium (Life Technologies,
Carlsbad, CA) supplemented with 10% heat inactivated fetal bovine
serum (Atlanta Biologicals Inc., Lawrenceville, GA) and grown in 5%
CO2 and 37 �C.

2.2. Recombinant antibody-avidin fusion protein production and
immunotoxin formation

The antibody-avidin fusion protein ch128.1Av (formerly known
as anti-human TfR IgG3-Av) has been previously described (Ng et
al., 2002, 2006). It consists of a mouse/human chimeric IgG3 anti-
body genetically fused to avidin via its CH3 domains. The IgG3 con-
tains the variable regions of the murine antibody 128.1. A similar
non-targeting isotype control fusion protein specfic for the hapten
dansyl (DNS): 5-dimethylamino naphthalene-1-sulfonyl chloride
(IgG3-Av) has been previously reported (Ng et al., 2006). Both fu-
sion proteins, expressed in murine myeloma cells, were purified
from cell culture supernatants using affinity chromatography. Pro-
teins were dialyzed into buffer (150 mM NaCl, 50 mM Tris–HCl, pH
7.8) and protein concentrations were determined by the bicinch-
oninic acid (BCA) Protein Assay (Thermo Fisher Scientfic, Walnut,
CA). Mono-biotinylated saporin (b-SO6, mw �30 kDa) was
purchased from Advanced Targeting Systems (San Diego, CA) as a
custom conjugate of one biotin per toxin molecule. ch128.1Av or
IgG3-Av was conjugated to b-SO6 in a 1:1 M ratio on ice for
30 min before the addition to cell culture medium as previously
described (Daniels et al., 2007).

2.3. Microarray hybridization and data quality control

IM-9 and U266 cells were incubated for 1, 3, 9, or 24 h with
10 nM ch128.1Av alone or conjugated to b-SO6. Control samples
consisted of cells incubated with an equal volume of buffer alone
for the same time points. Total mRNA was collected from all samples
using the RNeasy Kit (Qiagen, Valencia, CA). RNA was quantified and
the integrity evaluated using a Agilent 2100 Bioanalyzer (Agilent
Technologies, Inc., Santa Clara, CA). RNA was hybridized onto
HumanRef-8 v2 Expression BeadChips (Illumina, Inc., San Diego,
CA) and global gene expression profiles for these samples were col-
lected using the BeadArray software package (Illumina). Quality
control, preprocessing, data normalization, and statistical analysis
of differential expression was performed as described previously
(Rodriguez et al., 2011). All changes were deemed significant
chanism of cell death induced by saporin delivered into cancer cells by an
2012), http://dx.doi.org/10.1016/j.tiv.2012.10.006
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(p < 0.05) based on a regularized Bayesian test. Data for ch128.1Av-
treated cells has already been reported (Rodriguez et al., 2011).

2.4. Proliferation and apoptosis assays

IM-9 and U266 cells were incubated for 48 h with 10 nM
ch128.1Av alone or conjugated to b-SO6. Control cells were incu-
bated with an equal volume of buffer alone. Inhibition of cell pro-
liferation was monitored using the [3H]-thymidine incorporation
assay as previously described (Daniels et al., 2007). Apoptosis
was assessed using Annexin V staining and flow cytometry as de-
scribed previously (Daniels et al., 2007). For antioxidant studies,
IM-9 and U266 cells were treated with 10 or 1 nM ch128.1Av, b-
SO6, or the ch128.1Av/b-SO6 complex in the presence or absence
of 2 mM of the antioxidant N-acetylcysteine (NAC) for 48 h. As a
commonly used protein synthesis inhibitor, cells were treated with
cycloheximide (CHX, ThermoFisher Scientific, Walnut, CA). Differ-
ent concentrations of CHX were used for the two cell lines since
U226 can be resistant to apoptosis due to the high level of Bcl-xL
expression (Catlett-Falcone et al., 1999). U266 cells were treated
with either 100 or 10 lg/mL CHX and IM-9 cells were treated with
1.0 or 0.1 lg/mL CHX (in the presence or absence of 2 mM NAC).
Apoptosis was then assessed by flow cytometry. Ten thousand
events were recorded for each sample on a Becton–Dickinson FAC-
Scan Analytic Flow Cytometer (BD Biosciences, San Jose, CA) in the
UCLA Jonsson Comprehensive Cancer Center and Center for AIDS
Research Flow Cytometry Core Facility. Data were analyzed using
the FCS Express V3 software (De Novo Software, Los Angeles, CA).

2.5. Validation by real time, quantitative PCR (QPCR)

New RNA samples were collected using the RNeasy Kit (Qiagen)
from IM-9 and U266 cells treated with either 10 nM ch128.1Av, b-
SO6, or the ch128.1Av/b-SO6 complex for 24 h. U266 and IM-9
cells were also treated with 100 lg/mL or 1.0 lg/mL CHX, respec-
tively, for 24 h as a control protein synthesis inhibitor. cDNA was
prepared using 2 lg of RNA and the High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Carlsbad, CA) according to
the manufacturer’s protocol. For all QPCR reactions, cDNA samples
were diluted 1:100 since this dilution was pre-determined to be
overall the best for target and housekeeping genes in untreated
cells. The Universal Probe Library Real Time PCR System (Roche Ap-
plied Science, Indianapolis, IN) was used for validation of gene
expression. This system uses sequence-specific primers that recog-
nize the gene of interest as well as fluorescently labeled probes
that attach to the piece of DNA that is being amplified. The online
Assay Design Center (Roche Applied Science) that uses the gene
accession numbers was used to identify the universal probe and
primer sequences for each reaction. This information is given in Ta-
ble 1. Primers were synthesized by Integrated DNA Technologies
Table 1
Gene, probe, and primer information for real time PCR analysis.

Gene Accession # UPL Probe #

TXNIP NM_006472.3 85
CDC14B AF023158.1 66
RGS1 NM_002922.3 84
GADD45b AF087853.1 10
HIST2H4 AF525682.1 25
BHLHB2 AB043885.1 66
TSC22D3 BC072446.1 10
KLF6 BC000311.2 85
NFKBIE ENST00000275015.4 79
FYTTD1 BC039734.1 25
THUMP2 BC013299.2 86

UPL: universal probe library (Roche Applied Sciences).

Please cite this article in press as: Daniels-Wells, T.R., et al. Insights into the me
antibody fusion protein targeting the transferrin receptor 1. Toxicol. in Vitro (
(Coralville, IA). The GAPDH reference gene kit labeled with Yel-
low555 (Roche Applied Science) was used as a housekeeping gene.
All other probes were labeled with FAM. Real time PCR reactions
(total volume of 20 lL) were prepared using the LightCycler 480
Probes Master Mix (Roche Applied Science) as instructed by the
manufacturer and run on the LightCycler 480 in the GenoSeq UCLA
Genotyping and Sequencing core facility. The LightCycler 1.5 Soft-
ware (Roche Applied Science) was used to analyze all data. This
software uses the DDCT method to calculate the fold change in
gene expression compared to the reference gene in treated versus
control cells treated with buffer alone.

2.6. Confocal microscopy

ch128.1Av (10 nM) conjugated to b-SO6 was labeled with Ze-
non� (excitation 594 nm; Life Technologies) and the labeled com-
plex was incubated with IM-9 or U266 cells for 1 or 16 h. Cells
were collected, fixed with 3.7% paraformaldehyde, permeabilized
with 0.2% Triton-X and incubated with a goat anti-saporin anti-
body labeled with Alexa Fluor� 488 (Advanced Targeting Systems)
for at least 2 h followed by the anti-goat IgG labeled with Alexa
Fluor� 488 (Life Technologies) for 1 h. After washing, cells were
mounted on slides in Vectashield� mounting medium with
1.5 lg/mL DAPI (Vector Labs, Burlingame, CA). Images were ob-
tained using a confocal microscope (Leica, Wetzlar, Germany)
equipped with an oil-immersion NA 1.4 60� objective. Images
were analyzed using ImageJ software (NIH). Confocal laser scan-
ning microscopy was performed in the California NanoSystems
Institute Advanced Light Microscopy/Spectroscopy Shared Re-
source Facility at UCLA.

2.7. Western Blot analysis of nuclear extracts

Both IM-9 and U266 cells were treated in 60 mm dishes with
10 nM ch128.1Av/b-SO6 for either 1 or 16 h. Nuclear and cytoplas-
mic extracts were prepared using the Nuclear Extract Kit (Active
Motif, Carlsbad, CA) as described by the manufacturer. Control cells
were incubated with an equal volume of buffer alone. Protein con-
centrations were determined using the BCA protein assay (Thermo
Fisher Scientfic). Proteins (20 lg for cytoplasmic fractions and 2 lg
for nuclear extracts) were then separated on 4–12% Bis–Tris Nu-
PAGE gels (Life Technologeis) in MOPS buffer. Proteins were trans-
ferred to Whatman Protran nitrocellulose membranes (Thermo
Fisher Scientific) and probed with a goat anti-saporin antibody la-
beled with horseradish peroxidase (HRP; Advanced Targeting Sys-
tems). A rabbit anti-human GAPDH antibody (Cell Signaling
Technology, Boston, MA) was used as a control for cytoplasmic pro-
tein and was detected using a donkey anti-rabbit IgG-HRP (GE
Healthcare Life Sciences, Piscataway, NJ). The murine antibody tar-
geting the human TATA-box binding protein (TBP; Life Technolo-
50 Primer 30 Primer

cttctggaagaccagccaac gaagctcaaagccgaacttg
gggtgccattgcagtacatt agatcctgacccacgcaat
tgaaatcttccaagtccaagg tccaaagacattttgaccagttt
cattgtctcctggtcacgaa taggggacccactggttgt
gagtgagagggacctgagca cctctcgacatttcgtcattt
tggattcccctgagttaaggt tcaggaaaatcctttgacagataa
tggtggccatagacaacaag tctcggatctgctccttcag
gatgagttaaccaggcacttcc agaggtgcctcttcatgtgc
gctctgttgcctggcttt agccagatggagtgctgtct
gcaatgaaaacctcgacaaaa attgctgggcaccacttt
gacttgactttcagagtatcttgtcg aattccaattacttttcctacctcct

chanism of cell death induced by saporin delivered into cancer cells by an
2012), http://dx.doi.org/10.1016/j.tiv.2012.10.006
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gies) was used as a nuclear protein control as previously described
(Dansithong et al., 2008) and was detected using a sheep anti-
mouse IgG-HRP antibody (GE Healthcare Life Sciences). For all
Western Blots the ChemiGlow West Chemiluminescent Substrate
(ProteinSimple, San Jose, CA) was used as described by the manu-
facturer and blots were developed on a Kodak X-OMAT 2000A
(Rochester, NY).
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2.8. Long-term culture-initiating cell assay (LTC-IC)

Bone marrow mononuclear cells (BMMC, StemCell Technolo-
gies, Vancouver, Canada) were treated with 10 nM ch128.1Av, b-
SO6, ch128.1Av/b-SO6 or IgG3-Av/b-SO6 for 1 h in Iscove’s Mod-
fied Dulbecco’s Medium with 2% FBS. Cells were then washed 3
times and the assay was carried out as recommended in the LTC-
IC Procedure Manual (StemCell Technologies) and as described
previously (Daniels et al., 2011). In brief, treated cells were seeded
on a M2-10B4 murine fibroblast (ATCC) feeder layer in human
long-term medium (StemCell Technologies). Cells were cultured
for 5 weeks with half media changes weekly. Both nonadherent
and adherent cells were harvested and seeded in quadruplicate
in MethoCult GF + H4435 (‘‘Complete PLUS’’ methylcellulose med-
ium with recombinant cytokines and erythropoietin; StemCell
Technologies). After an 18-day incubation total colony numbers
were determined using an Olympus CK2 inverted microscope
(Olympus America Inc., Center Valley, PA). The assay was con-
ducted using BMMC from 3 different donors.
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Fig. 1. Time course protocol for mRNA isolation and verification of the cytotoxic
effects of the fusion protein alone and conjugated to b-SO6. Cells were treated with
10 nM ch128.1 alone or conjugated to b-SO6 for the indicated times in duplicate
samples in a 48-well plate at 200,000 cells/well (A). At each time point RNA was
collected for microarray analysis. Control wells were treated with buffer alone.
Additional wells for each treatment were incubated in parallel for 48 h to measure
the anti-proliferative (B) and pro-apoptotic (C) effect of ch128.1Av and ch128.1Av/
b-SO6 on IM-9 and U266 cells. The anti-proliferative effect was measured by [3H]-
thymidine incorporation and values expressed as the % of buffer control. Error bars
represent standard deviation. Apoptosis was determined by flow cytometry in cells
labeled with Annexin-V/Propidium Iodide. Percentage of total cells is shown in the
corner of each quadrant.
3. Results

3.1. Global gene expression analysis in cells treated with the
ch128.1Av/b-SO6 conjugate

Two cell lines were chosen for the global gene expression anal-
ysis. IM-9 cells are highly sensitive to the effects of the fusion pro-
tein alone, while U266 cells are resistant (Daniels et al., 2007; Ng et
al., 2006; Rodriguez et al., 2011). Both malignant B-cell lines have
been previously shown to be sensitive to apoptosis-induced by the
ch128.1Av/b-SO6 conjugate (Daniels et al., 2007). RNA was col-
lected for analysis from both cells lines at various time points after
treatment with ch128.1Av/b-SO6 (Fig. 1A). Cells incubated with
buffer alone were used as controls. Treated cells were also moni-
tored simultaneously for the expected cytotoxic effects at 48 h
using proliferation and apoptosis assays (Fig. 1B, C). As expected,
ch128.1Av was only cytotoxic to IM-9 cells, while both cell lines
were sensitive to the effects of the conjugate.

HumanRef-8 v2 Expression BeadChips were used to monitor
gene expression changes. The data normalization process is de-
scribed and shown in Supplementary Fig. 1. The number of differ-
entially expressed genes (LFC > 1, p < 0.05) in IM-9 cells was higher
than those of U266. Most of the changes in IM-9 cells occurred at 9
and 24 h and included both up and down regulation of genes
(Fig. 2A). Limited changes were detected in U266 cells treated with
the conjugate and all changes were upregulation of the specified
genes (Fig. 2B). A focused view of the expressional changes
(LFC > 1, p < 0.05) that occurred in IM-9 cells after 9 h of treatment
with the conjugate (compared to buffer alone) is shown in Fig. 2C.
Gene expression changes (LFC > 1, p < 0.05) in the two cells lines
for the same treatment times are compared in Fig. 3 and ontologies
are shown in Fig. 4. A Venn diagram (Supplementary Fig. 2) shows
the gene expression changes that were observed in IM-9 and U266
cells. A set of 11 genes were upregulated in both cell lines: TXNIP,
CDC14B, HIST2H4, RGS1, THUMPD2, KLF6, BHLHB1, FYTTD1,
GADD45B, TSC22D3, and NFKBIE. No genes were found to be down-
regulated in both cell lines. The expression levels of these 11 genes
Please cite this article in press as: Daniels-Wells, T.R., et al. Insights into the me
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were further analyzed by QPCR to confirm the gene expression
changes (Fig. 5, Table 2). In the QPCR analysis, the changes ob-
served in the 11 genes in IM-9 cells were of higher magnitude than
those of U266 and were consistent with the microarray data. All 11
genes tested by QPCR showed upregulation upon treatment with
the ch128.1Av/b-SO6 conjugate, but not with the fusion protein
or the toxin alone. These genes are different from those that were
previously shown to be differentially expressed in response to the
fusion protein alone, which are consistent with a response to iron
deprivation (Rodriguez et al., 2011). However, 10 of the genes were
also upregulated in both cell lines upon treatment with the
commonly used protein synthesis inhibitor CHX (Supplementary
Table 1). HIST2H4 was the only gene not consistently upregulated
by CHX in both cell lines. Thus, this transcriptional response
appears to be in response to protein synthesis inhibition in general
and not a specific response to the ch128.1Av/b-SO6 conjugate.
chanism of cell death induced by saporin delivered into cancer cells by an
2012), http://dx.doi.org/10.1016/j.tiv.2012.10.006
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3.2. The effect of the antioxidant N-acetylcysteine on saporin-induced
apoptosis

The gene expression profile of IM-9 and U266 cells treated with
the ch128.1Av/b-SO6 conjugate is consistent with the induction of
oxidative stress and DNA damage triggered by the toxin. In order to
Please cite this article in press as: Daniels-Wells, T.R., et al. Insights into the me
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examine whether oxidative stress plays a role in the apoptosis
mediated by the toxin, the antioxidant NAC was co-incubated with
the conjugate or CHX for the full 48 h and apoptosis assessed.
Cells were treated with 1nM ch128.1Av/b-SO6 since this concen-
tration consistently induces a high level of apoptosis in both cell
lines. Additionally, we used a high concentration (10 nM) of the
chanism of cell death induced by saporin delivered into cancer cells by an
2012), http://dx.doi.org/10.1016/j.tiv.2012.10.006
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Fig. 3. Comparison of gene expression changes in IM-9 and U266 at the various
time points. Direct comparison in gene expression changes between IM-9 and U266
cells treated with ch128.1Av/b-SO6 in which genes with a variance greater than 0.4
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6 T.R. Daniels-Wells et al. / Toxicology in Vitro xxx (2012) xxx–xxx

TIV 2972 No. of Pages 12, Model 5G

24 October 2012
conjugate as to determine if the effects of NAC were dose-depen-
dent. We also used a high and a low dose of CHX. As expected,
ch128.1Av alone had no effect on U266 cells. In IM-9 cells
ch128.1Av had an effect that was not blocked by NAC. However,
in both cell lines ch128.1Av/b-SO6 strongly induced apoptosis that
could be blocked by NAC in a dose-dependent manner (Fig. 6). CHX
induced apoptosis in both cell lines; however, NAC did not block
this cell death.
427
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434
3.3. Analysis of saporin localization

To address the possibility that b-SO6 can cause direct DNA dam-
age upon delivery by ch128.1Av into the cells, we performed local-
ization studies by confocal microscopy. If saporin is found within
the nucleus, it would be possible that the toxin can cause direct
DNA damage. Therefore, we followed the internalization of
Please cite this article in press as: Daniels-Wells, T.R., et al. Insights into the me
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ch128.1Av/b-SO6 in IM-9 (Supplementary Fig. 3) and U266 (Sup-
plementary Fig. 4) cells over a 24-h period. The ch128.1Av/b-SO6
complex was intracellularly localized after 30 min. The complex
was seen in punctate structures in the cytoplasm and accumulated
around the nucleus. The toxin appeared to colocalize with
ch128.1Av; however, no strong intranuclear localization of saporin
was detected by confocal microscopy at any time point tested.
Nevertheless, Western Blot analysis showed that the toxin was de-
tected in nuclear extracts in both IM-9 and U266 cells as early as
1 h after treatment (Fig. 7). After 16 h post-exposure, there ap-
peared to be higher levels of b-SO6 in the nuclear extracts.
3.4. In vitro toxicity to hematopoietic stem cells and early progenitors

Since the ch128.1Av/b-SO6 conjugate targets malignant hema-
topoietic cancers via interaction with TfR1, we evaluated the po-
tential toxicity of the conjugate on normal hematopoietic stem
and early progenitor cells using the long-term cell-initiating cul-
ture (LTC-IC) assay. The LT-IC assay enumerates the number of or
pluripotent hematopoietic stem and noncommitted, early progen-
itor cells within a given sample. The number of colonies at the end
of the assay correlates with the number of viable pluripotent pro-
genitor cells after treatment. Exposure to ch128.1Av/b-SO6 did not
result in a reduction of colony number (Table 3) when we tested
BMMC from 3 different donors, suggesting that the conjugate is
not toxic to this population of cells. ch128.1Av or b-SO6 alone, as
well as the isotype control conjugate (IgG3-Av/b-SO6), also did
not affect colony formation.
4. Discussion

We have previously shown that the delivery of the single chain
RIP b-SO6 using ch128.1Av effectively blocks protein synthesis,
activates caspases 2 and 3, and to lesser extent caspases 8 and 9,
and induces apoptosis in malignant B cells (Daniels et al., 2007).
In order to further explore the mechanism of cell-death induced
by this immunotoxin, we conducted a global gene expression anal-
ysis in two different human malignant B-cell lines, one that is sen-
sitive to the cytotoxic effects of the fusion protein alone (IM-9) and
one that is not (U266). Eleven genes that were differentially ex-
pressed in both cell lines were identified. Since these genes were
similarly activated in both cell lines, they may represent a general-
ized response to the toxin in malignant B cells. The proteins en-
coded by 11 genes upregulated in both cell lines in response to
the immuntoxin are involved in the cellular response to oxidative
stress, DNA damage, or are involved with RNA processing. KLF6 is a
zinc finger-containing transcription factor whose expression in-
creases upon treatment with hydrogen peroxide (Cullingford et
al., 2008; Ghaleb and Yang, 2008). It also acts as a tumor suppres-
sor that has been shown to interact with Cyclin D1 causing cell cy-
cle arrest (Benzeno et al., 2004). TXNIP can also act as a tumor
suppressor and plays a role in redox homeostasis through its inter-
action with the antioxidant thioredoxin (Zhou and Chng, 2012).
The expression of TXNIP is increased upon treatment with various
anti-cancer agents and it has been shown to render cells more sen-
sitive to oxidative stress (Yoshioka et al., 2006). CDC14B is a phos-
phatase known to regulate the cell cycle. Its expression was shown
to increase upon treatment with the plant toxin curcumin, which
induced DNA damage in lung carcinoma cells (Skommer et al.,
2007). It has also been suggested that CDC14B may be required
for DNA repair of double stranded breaks (Mocciaro et al., 2010;
Wei et al., 2011). BHLHB2 has been previously shown to be upreg-
ulated in response to DNA damaging agents in a p53-independent
manner (Thin et al., 2007). It is also a regulator of ionizing radia-
tion-induced apoptosis and cell death caused by other stress
chanism of cell death induced by saporin delivered into cancer cells by an
2012), http://dx.doi.org/10.1016/j.tiv.2012.10.006
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stimuli including hypoxia and serum starvation (Yamada and
Miyamoto, 2005). GADD45B is induced by various stress stimuli
including DNA damage, DNA alkylating agents, UVB radiation,
and the multi-kinase inhibitor sorafenib (Ou et al., 2010; Thyss et
al., 2005; Zumbrun et al., 2009). Additionally, GADD45B was in-
duced by treatment with either the verotoxin or shiga toxin 2, tox-
ins produced by Escherichia coli that inhibit protein synthesis (the
shiga toxin 2 is an N-glycosyidase), in human colorectal carcinoma
cells or brain microvascular endothelial cells, respectively (Bhatta-
charjee et al., 2005; Fujii et al., 2008). The gene encoding the core
histone protein HIST2H4 was also upregulated in both IM-9 and
U266 cells. HIST2H4 can regulate DNA repair and has been shown
to be upregulated by photodynamic therapy, which induces an in-
crease in cellular ROS levels (Cekaite et al., 2007). Reactive oxygen
species (ROS) can interact with signaling molecules, other proteins,
and nucleic acids causing a variety of changes in growth signaling
Please cite this article in press as: Daniels-Wells, T.R., et al. Insights into the me
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and cellular damage that can lead to apoptosis or necrosis (Fogg et
al., 2011; Mates et al., 2012; Ray et al., 2012). Specifically, ROS can
cause DNA damage by inducing DNA strand breaks, mutations,
deletions, gene amplification, and rearrangements. The upregula-
tion of the above mentioned genes by b-SO6 delivered into cells
by ch128.1Av suggests that the toxin may increase the oxidative
stress level within the cell through the induction of ROS. Further-
more, these data, together with the fact that caspase-2 can func-
tion in response to DNA damage (Cullen and Martin, 2009;
Krumschnabel et al., 2009; Zhivotovsky and Orrenius, 2005), is
highly activated by ch128.1Av/b-SO6 (Daniels et al., 2007) suggest
that the toxin induces DNA damage in treated cells.

Treatment with the ch128.1Av/b-SO6 conjugate also upregu-
lated other genes involved in RNA binding and processing, as well
as the inhibition of the NF-jB pathway. THUMPD2 encodes for a
methyltransferase with a putative RNA-binding domain whose
chanism of cell death induced by saporin delivered into cancer cells by an
2012), http://dx.doi.org/10.1016/j.tiv.2012.10.006
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Fig. 5. Validation of gene expression changes by real time PCR. Freshly isolated RNA
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Table 2
Comparison of microarray and QPCR data for the 11 genes commonly upregulated in
IM-9 and U266 cells.

Gene U266
Micoarray
(Fold Change)

U266 QPCR
(Fold Change)

IM-9
Microarray
(Fold Change)

IM-9 QPCR
(Fold Change)

TXNIP 3.0 8.2 8.4 22.4
CDC14B 2.9 2.2 15.2 2.9
HIST2H4 2.3 2.0 9.4 5.7
RGS1 4.1 14.5 6.8 18.8
THUMPD2 2.1 5.3 3.6 6.2
KLF6 2.3 5.6 4.6 8.6
BHLHB1 2.0 2.9 2.9 1.9
FYTTD1 2.1 2.0 3.5 2.5
GADD45B 2.1 13.1 13.5 25.5
TSC22D3 2.9 12.8 2.9 8.1
NFKBIE 2.1 4.9 6.4 7.5
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function is not understood (Aravind and Koonin, 2001). FYTTD1 en-
codes a protein that is required for mRNA processing and export
from the nucleus to the cytosol (Hautbergue et al., 2009). This
upregulation of proteins involved in RNA binding and processing
Please cite this article in press as: Daniels-Wells, T.R., et al. Insights into the me
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is understandable as a compensatory response, given the fact that
b-SO6 strongly inhibits protein synthesis. Additionally, the NF-jB
pathway is also affected by b-SO6 treatment. The NF-jB family
of transcription factors play a role in immunity, inflammatory re-
sponses, and ultimately cell growth (Bubici et al., 2006). A unique
interaction occurs between ROS and the NF-jB pathway. Depend-
ing on the circumstances, ROS can either induce or inhibit the NF-
jB pathway (Bubici et al., 2006). The activity of these transcription
factors is regulated by a family of inhibitors (IjBs), one of which is
encoded by the gene NFKBIE (IjBe) (Li and Nabel, 1997; Whiteside
et al., 1997). This inhibitor blocks NF-jB activity by sequestering
certain family members in the cytoplasm and keeping them from
translocating to the nucleus. In our studies, b-SO6 also upregulated
the protein encoded by the TSC22D3 gene. This protein is known to
inhibit inflammation (Beaulieu et al., 2010) and NF-jB activity (Di
Marco et al., 2007). Furthermore, TSC22D3 is upregulated by gluco-
corticoid treatment in MM cells (Grugan et al., 2008). Moreover,
ch128.1Av/b-SO6 upregulates the RGS1 protein that is known to
block signal transduction blocking the activity of GTPase activating
proteins (Bansal et al., 2007). Recently, RGS1 levels increased in
plant cells treated with ozone, which was shown to induce ROS
levels (Booker et al., 2012). Taken together, our data suggest that
b-SO6 induces a transcriptional response in malignant B cells con-
sistent with the induction of oxidative stress/DNA damage that re-
sults in the blockage of signal transduction, cell cycle arrest, and
ultimately apoptosis. However, 10 out of the 11 genes that were
upregulated by the ch128.1Av/b-SO6 conjugate were also upregu-
lated by the protein synthesis inhibitor CHX. This compound inter-
feres with the translocation step in protein synthesis and thus,
inhibits translational elongation. These data suggest that the ob-
served transcriptional response is not specific to the effects of
the toxin per se, but rather, is a response to a block in protein
synthesis.

To our knowledge this is a pioneer study in terms of the gobal
expression analysis in cancer cells treated with SO6 alone or bound
to any delivery vehicle. However, a gene expression analysis has
been conducted in human airway cells treated with the native ricin
toxin for 24 h (Wong et al., 2007). This analysis showed the upreg-
ulation of a variety of histones; however, HIST2H4 (upregulated by
b-SO6 in our studies) was not one of them. Ricin did increase the
expression of HIST2H2AA and TNFAIP3, which were observed to
be upregulated by b-SO6 in our studies, but only in IM-9 cells. Fur-
thermore, in murine kidney cells isolated from animals in which ri-
cin was administered intravenously, gene expression changes
included a decrease in ATF4 expression and an increase in ICAM-
1 (Korcheva et al., 2005), which were also differentially expressed
in our studies in IM-9 cells only. In general, the genes upregulated
by ricin in these two studies did not overlap with the 11 genes that
were seen to be upregulated in both IM-9 and U266 cells under our
study conditions.

In order to confirm the role of ROS in the cell-death mediated by
b-SO6, we co-incubated cells with the antioxidant NAC. Surpris-
ingly, even though b-SO6 is a potent inhibitor of protein synthesis,
the protective effect of NAC was very strong. This suggests that, in
addition to the inhibition of protein synthesis, ROS play a major
role in b-SO6-mediated cytotoxicity. In our study, NAC was unable
to block the effects of CHX, even though the transcriptional re-
sponse to CHX and the immunotoxin were similar. We observed
that apoptosis induced by CHX occurred at a faster rate and thus,
the effects of CHX may have been too strong for NAC to neutralize.
Alternatively, there may be a difference in the type of ROS gener-
ated by the two treatments and NAC can only protect from those
induced by b-SO6. Further studies are needed to understand this
phenomenon. The fact that NAC can block apoptosis induced by
our conjugate is consistent with the observation that NAC was able
to block the DNA damage induced by abrin, a Type I RIP similar to
chanism of cell death induced by saporin delivered into cancer cells by an
2012), http://dx.doi.org/10.1016/j.tiv.2012.10.006
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Table 3
Effect of ch128.1Av on normal pluripotent hematopoietic progenitor cells from three
separate donors as determined by the LTC-IC assay.

Donor 1 Donor 2 Donor 3

Untreated 7 ± 0.96 1 ± 0.82 13 ± 1.71
Buffer 13 ± 1.00 3 ± 1.83 ND
ch128.1Av 15 ± 2.20 3 ± 1.50 13 ± 2.16
b-SO6 15 ± 2.63 9 ± 2.08 21 ± 1.15
IgG3-Av/b-SO6 10 ± 1.83 8 ± 1.71 20 ± 2.71
ch128.1Av/b-SO6 12 ± 1.50 10 ± 2.65 21 ± 2.5

Data represent the mean of quadruplicates ±the standard deviation. LTC-IC indi-
cates long-term cell-initiating culture; ND, not determined. Data for the untreated,
buffer, and ch128.1Av alone have been previously reported (Daniels et al., 2011). All
samples were tested simultaneously in each donor.
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b-SO6, in U937 human myeloleukemic cells (Bhaskar et al., 2008).
Ricin-induced apoptosis is also mediated by the generation of ROS
in the HeLa human cervical cancer cell line (Rao et al., 2005). How-
ever, ricin has also been shown to cause direct DNA damage that
occurs prior to the induction of apoptosis (Brigotti et al., 2002).
CHX was also used in that study and was shown to block protein
Please cite this article in press as: Daniels-Wells, T.R., et al. Insights into the me
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synthesis but did not appear to induce DNA damage. This is consis-
tent with our study showing that NAC did not block the cytotoxic
effects of CHX. Taken together, these studies suggest that while
RIPs are potent inhibitors of protein synthesis, they also induce
oxidative stress that contributes their cytotoxic effects.

Although SO6 lacks a cell-binding domain, at high concentra-
tions and under certain conditions, it can enter cells and cause
cytotoxicity (Lombardi et al., 2010). It has been suggested that in
some cases the LDL-related family of receptors may be involved
in the uptake of the natural toxin in mammalian cells. It has also
been suggested that the natural toxin is taken up mostly by recep-
tor-independent endocytosis (Bolognesi et al., 2012). Since SO6 is
known to act on the ribosomes to block protein synthesis, the toxin
must ultimately reach the cytosol. However, its intracellular traf-
ficking is still largely unknown (Lombardi et al., 2010). It has been
chanism of cell death induced by saporin delivered into cancer cells by an
2012), http://dx.doi.org/10.1016/j.tiv.2012.10.006
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suggested that SO6 can remove adenine from DNA through its N-
glycosidase activity (Gasperi-Campani et al., 2005; Roncuzzi and
Gasperi-Campani, 1996), although this is controversial (Lombardi
et al., 2010). However, if this is the case, SO6 must reach the nu-
cleus. Although the catalytic activity of SO6 is similar to that of ri-
cin, the intracellular trafficking of the two toxins clearly differs.
Ricin (a Type II RIP that contains a cell-binding domain) undergoes
retrograde transport through the endoplasmic reticulum where it
exploits the ER-associated degradation pathway to reach the cyto-
sol (Spooner et al., 2006; Vago et al., 2005). Previous studies have
suggested that saporin (specific isoform not specified) may traffic
through an endosomal compartment due to partial colocalization
with disulphide isomerase, an endoplasmic reticulum marker, in
GL15 human glioblastoma cells (Cimini et al., 2011) and LAMP2,
a late endosome marker, in Vero monkey kidney cells (Vago et
al., 2005). Saporin did not colocalize with the early endosome mar-
ker EEA1 or the Golgi marker Golgin 97 (Vago et al., 2005). Another
study found SO6 localized intracellularly within 20 min (Bolognesi
et al., 2012). At this time SO6 was detected in endocytic vesicles in
the HeLa cytosol accumulating in a perinuclear vesicular structure
via fluorescence microscopy detection. About 30% of SO6 colocal-
ized with the endosomal compartment (ER marker BiP) while
around 7% co-localized with the Golgi apparatus (Golgi marker
GM130) as seen by confocal microscopy. After a 1-h incubation,
4% of endocytosed SO6 was detected in the nucleus. Using trans-
mission electron microscopy, gold-saporin molecules were seen
migrating from the plasma membrane and clear vesicles and vacu-
oles into perinuclear late endosomes and lysosomes, with approx-
imately 10% of cells showing saporin nuclear localization
(Bolognesi et al., 2012). In addition, recombinant 125I-SO6 appears
to migrate from the cytosol to the nuclear fraction over time in
J774A.1 mouse macrophage cells as detected by immunoblotting
(Bagga et al., 2003).

It stands to reason that conjugation of SO6 to a delivery vehicle
would alter the natural trafficking of the toxin at least at the early
stages. The delivery of saporin (specific isoform not specified) con-
jugated to polyamidoamine dendrimer (PAMAM) coupled with the
photochemical internalization (PCI) technology, which break-
downs endosomal/lysosomal membranes by activating photosen-
sitizers localized on the membranes, resulted in enhanced
delivery of saporin into Ca9–22 gingival cancer cells (Lai et al.,
2008). Furthermore, saporin was found in the nucleus under these
conditions. In our colocalization studies, b-SO6 delivered by
ch128.1Av accumulated in cytoplasmic vesicles and did not show
a clear and consistent pattern of intranuclear localization. Since
we used only 10 nM of the toxin in our studies, and such small per-
centage of saporin has been reported to enter the nucleus, it is pos-
sible that b-SO6 was not clearly observed in the nucleus due to the
detection limits of confocal microscopy. However, we were able to
detect b-SO6 in nuclear extracts of treated cells by Western Blot
analysis, although we cannot determine if the toxin is associated
with the nuclear membrane or if it is actually within the nucleus.
Since the toxin may have reached the nucleus, it is possible that
it can interact directly with DNA, although we do not have direct
evidence for this at this time. Whether or not b-SO6 directly in-
duces DNA damage, its high toxicity and inability to enter cells
at low concentrations make it a meaningful therapeutic agent for
delivery purposes.

Toxicity to normal cells is always a concern with any anti-can-
cer drug. In order to address this concern, we evaluated the toxicity
of ch128.1Av/b-SO6 on hematopoietic stem and non-committed
progenitor cells. Our data show that there was no observed toxicity
on this population of cells. This is consistent with the fact that
these non-committed progenitors express very low levels of the
TfR1/CD71 (Gross et al., 1997; Knaan-Shanzer et al., 2008; Lans-
dorp and Dragowska, 1992). We have previously shown that the
Please cite this article in press as: Daniels-Wells, T.R., et al. Insights into the me
antibody fusion protein targeting the transferrin receptor 1. Toxicol. in Vitro (
conjugate is toxic to late (committed) progenitor cells of both the
erythroid and myeloid lineages (CFU-e, BFU-e and CFU-GM) (Dan-
iels et al., 2011) that are known to express the TfR1 (Daniels et al.,
2006b). Our results are consistent with a previous in vitro study
(that also used the LTC-IC assay), which demonstrated the deple-
tion of committed progenitor cells while pluripotent progenitors
were spared if human bone marrow cells were treated with an
immuntoxin composed of SO6 chemically conjugated with the
OKT9 antibody that targets the TfR1 (Benedetti et al., 1994). To-
gether, these results suggests that while the immunotoxin may
have toxicity against committed progenitor cells, these cells can
be repopulated by the pluripotent progenitors that are not affected
by treatment with the conjugate. These results also suggest that
the ch128.1Av/b-SO6 conjugate may be a therapeutic option for
the ex vivo purging of cancer cells during autologous stem cell
transplantation, a treatment option for some patients affected with
incurable B-cell malignancies such as MM, in which grafts can be
contaminated with MM cells that may shorten progression-free
survival (Bashey et al., 2008; Vogel et al., 2005).

In conclusion, in this study we further examined the mecha-
nism of b-SO6-induced apoptosis when the toxin is delivered into
malignant B cells using ch128.1Av. Our results here suggest that in
addition to its RIP function, b-SO6 induces the generation of ROS,
which may play a role in DNA damage and ultimately the induction
of apoptosis in malignant B cells by the ch128.1Av/b-SO6 conju-
gate. Our studies confirm the dual activity of ch128.1Av, in that
it can be a direct anti-cancer agent, as well as an effective delivery
agent for the transport of active molecules into cancer cells. Thus,
ch128.1Av alone or conjugated to therapeutic agents should be fur-
ther explored as a potential therapy for B-cell malignancies.
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