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SUMMARY

Many common diseases have an important in-
flammatory component mediated in part by macro-
phages. Here we used a systems genetics strategy
to examine the role of common genetic variation in
macrophage responses to inflammatory stimuli. We
examined genome-wide transcript levels in macro-
phages from 92 strains of the Hybrid Mouse Diversity
Panel. We exposed macrophages to control media,
bacterial lipopolysaccharide (LPS), or oxidized
phospholipids. We performed association mapping
under each condition and identified several thousand
expression quantitative trait loci (eQTL), gene-by-
environment interactions, and eQTL ‘‘hot spots’’
that specifically control LPS responses. We used
siRNA knockdown of candidate genes to validate
an eQTL hot spot in chromosome 8 and identified
the gene 2310061C15Rik as a regulator of inflam-
matory responses in macrophages. We have created
a public database where the data presented here
can be used as a resource for understanding many
common inflammatory traits that are modeled in the
mouse and for the dissection of regulatory relation-
ships between genes.
INTRODUCTION

After the completion of the Human Genome Project and the

HapMap project, the field of genetics witnessed an explosion
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of genome-wide association studies that aimed to identify the

common variants that affect common diseases in humans.

Despite this effort, accumulating data have shown that all iden-

tified loci combined can only explain a small fraction of the

variation in the population. This has been speculated to be partly

due to environmental factors and their interaction with various

genes influencing the traits. Therefore, uncovering such gene-

by-environment (GxE) interactions will aid in understanding

the mechanisms underlying the observed variation in the popu-

lation. In an effort to elucidate such interactions, we focused

on inflammation and sought to determine to what extent envi-

ronmental factors that trigger immunological responses interact

with naturally occurring variation to determine the phenotypic

outcomes.

Inflammation is the innate immune response to harmful stimuli

such as pathogens, injury, and tissue malfunction. Acute inflam-

mation is associated with the response to infection and tissue

injury and is often triggered by recognition of bacterial products

such as lipopolysaccharide (LPS). In contrast, chronic inflam-

mation is thought to be the underlying cause of many complex

diseases, including autoimmune disease (Kanter et al., 2006),

Alzheimer’s disease (Rojo et al., 2006), and atherosclerosis

(Berliner et al., 2009). We and others have shown that oxidized

phospholipids, such as oxidized 1-palmitoyl-2-arachidonoyl-

sn-glycero-3-phosphatidylcholine (OxPAPC), are potent envi-

ronmental stimuli that can trigger the initial recruitment of

macrophages and contribute to both initiation and progression

of chronic inflammation (Berliner et al., 2009).

Genetic variation in naturally occurring populations can have

dramatic effects on how individuals respond to environmental

stimuli such as LPS and OxPAPC. Studies in model organisms

have revealed thousands of GxE interactions responsible for

phenotypic differences among genetically diverse individuals
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(Smith and Kruglyak, 2008). Wurfel et al. demonstrated in hu-

mans that some individuals show high sensitivity to LPS,

whereas others exhibit low sensitivity (Wurfel et al., 2005), sug-

gesting that GxE interactions play a role in the extent of inflam-

matory responses. Similarly, chronic inflammatory conditions

such atherosclerosis are influenced by both genetic and envi-

ronmental variation, and multiple studies suggest that GxE

interactions are an important component of the disease etiology

(Romanoski et al., 2010).

In this study, we sought to understand macrophage inflamma-

tory responses and how these are influenced by genetics in

a panel of genetically diverse mouse inbred strains called the

Hybrid Mouse Diversity Panel (HMDP). We obtained primary

macrophages from each of the strains and exposed them to

inflammatory stimuli. We then profiled the transcriptome and

used genome-wide association to reveal genetic loci and GxE

interactions in the macrophage response to inflammatory

stimuli. All our results are publicly available through our database

website http://systems.genetics.ucla.edu/data. Here we will

describe our results and demonstrate how the analyses and

data we generated can be exploited to further our understanding

of cellular processes involved in macrophage inflammation.

RESULTS

Macrophage HMDP Samples
To better understand inflammatory responses in macrophages,

we obtained primarymacrophages from 92mouse inbred strains

of the HMDP.We exposed the cells to control media, LPS, or Ox-

PAPC and used microarrays to measure genome-wide

messenger RNA (mRNA) expression levels. To determine repro-

ducibility, we also examined expression levels from seven

strains in the control condition and five strains in the LPS condi-

tion at different times, using different mice of the same strain to

examine biological reproducibility. We used hierarchical clus-

tering of data for all genes in the microarray and found that

samples of the same strain clustered together independent of

the experiment date, suggesting that genome-wide expression

levels were highly reproducible for both experimental and biolog-

ical replicates (Figures S1A and S1B available online). As an

example, the variation in the response to LPS of Ccl2 (MCP-1)

is shown in Figure S1C.

If the variation in gene expression between samples of the

same strain was comparable to variation among different strains,

this would lead to false-positive results due to random fluctua-

tions in gene-expression levels. To examine this possibility, we

compared the distribution of the variance in gene expression

among different strains (inter-strain variance) to the variance in

samples from the same strain (intra-strain variance). We found

that the inter-strain variance was 2.2-fold larger than the intra-

strain variance in strain BXH20/KccJ (p = 1.26 3 10�226, Fig-

ure S1D), with similar results in additional strains, where the

inter-strain variance was larger than the intra-strain variance by

2-fold in BXA12/PgnJ (p = 0), 2.5-fold larger in BXD33/TyJ (p =

9.99 3 10�270), 2.4-fold larger in BXD36/TyJ (p = 8.49 3

10�309), and 2.3-fold larger in LG/J (p = 0).

We carried out expression array profiling inmacrophages from

92 strains out of the 100 strains originally included in the HMDP.
To ensure that we did not introduce a bias due to possible differ-

ences in cell viability in response to an inflammatory stimulus, we

examined viability using calcein AM, which produces an intense

fluorescence in live but not dead cells (Figure S2). We found no

significant differences in viability after LPS treatment (p = 0.76)

between cells from strains included (93.6%) and strains not

included in this study (94.9%).

Genetic, Environmental, and GxE Interactions
In a genetically diverse population such as our panel of

strains, GxE interactions can be observed when a strain(s) re-

sponds to a given environmental stimulus (e.g., LPS), whereas

another strain(s) of different genetic background does not. We

found GxE interactions in 2,607 (20.1%) genes in LPS-treated

cells, 512 (3.9%) genes in OxPAPC-treated cells, and 2,786

(21.5%) genes that showed a GxE interaction in at least one

of the conditions. Although treatment influenced expression

levels in a larger number of genes for LPS than for OxPAPC

treatment, a large proportion of the genes differentially ex-

pressed show GxE interactions in both LPS (2607/2802, 93%)

and OxPAPC (512/593, 86%) treatments. The total number of

genes regulated and genes regulated over 2-fold is shown in

Table S1.

Figure 1 shows representative examples of environmental,

genetic, and GxE effects. Expression levels of Heme Oxygen-

ase-1 (Hmox1) are shown in Figure 1A for cells in control and

OxPAPC-treated cells in different mouse strains and in Figure 1B

for cells in control and LPS-treated cells. Hmox1 expression is

strongly regulated by environmental inflammatory stimuli in

response to OxPAPC (p < 1 3 10�16), but not in response to

LPS. In contrast, expression of N-acetylneuraminate pyruvate

lyase (Npl) is strongly influenced by genetic effects (Figure 1C,

p < 1 3 10�16), but not by environmental effects in response to

LPS (p = 0.37). The expression levels of Interferon-activated

gene 205 (Ifi205) are influenced by environmental effects (Fig-

ure 1D, p < 5.17 3 10�6) and genetic effects (p < 1 3 10�16)

and show a GxE interaction (p < 1 x 10�16).

We used DAVID gene ontology (GO) to identify pathways and

cellular processes enriched in genes regulated by inflammatory

stimuli. Consistent with previous work, we found that phospho-

proteins (p = 2.5 x 10�23), Toll-like receptor signaling (p = 5.1 x

10�9), and NOD-like receptor signaling (p = 4.1 x 10�6) were

highly enriched in response to LPS, whereas regulation of kinase

activity (p = 4.7 x 10�5), cytokine production (p = 3.7 x 10�5), and

SH2 domain (p = 1.8 x 10�4), which recognizes phosphorylated

tyrosine residues, were enriched in response to OxPAPC. Genes

that were regulated by OxPAPC and not by LPSwere enriched in

glutathione metabolism (p = 1.5 x 10�5) and response to oxida-

tive stress (p = 9.5 x 10�3), consistent with the hypothesis that

oxidative stress plays a major in role in chronic inflammatory

disorders such as atherosclerosis. In contrast, genes regulated

by LPS and not by OxPAPC were enriched in phosphoproteins

(p = 1.2 x 10�20) and the Toll-like receptor pathway (p = 1.4 x

10�8).

The complete list of genes, fold-induction, ANOVA p values,

and FDRs can be found in the online database, as can plots

similar to those shown in Figure 1 to examine the response to

LPS or OxPAPC for all genes represented in the array.
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Figure 1. Environmental, Genetic, and GxE Interaction Effects on Gene Expression

Expression levels are plotted as the log2(microarray intensity) on the y axis and for mouse strains on the x axis. Each dot represents the levels of a gene for a given

strain in control (blue dots) and treated cells (red dots).

(A and B) Hmox1 expression in response to OxPAPC (A) and Hmox1 in response LPS (B) illustrate environmental effects.

(C) Npl levels are influenced by genetic effects.

(D) Expression levels of Ifi205 are influenced by GxE interactions.

See also Figures S1 and S2.
Association Mapping of Gene Expression
To identify genetic loci responsible for inflammatory responses

and GxE interactions, we used single-nucleotide polymorphisms

(SNPs) across the mouse genome to perform association

mapping of genome-wide expression levels. For each gene,

we associated differences in gene expression to genetic

differences using efficient mixed model association (EMMA).

We and others have previously shown that EMMA effectively

reduces false-positive associations due to population structure

among the mouse inbred strains (Bennett et al., 2010; Kang

et al., 2008), thus allowing us to identify genomic loci that

regulate the mRNA expression levels of any given gene repre-

sented in the microarray. These loci are commonly referred to

as expression quantitative trait loci, or eQTL.

We observed dramatic differences in the eQTL identified in

control, LPS-treated, and OxPAPC-treated macrophages (Fig-

ure 2 and Table S2). We found both local or cis-eQTL, where

expression levels of a gene were regulated by genetic variation

at or near that same gene, as well as distant or trans-eQTL,
660 Cell 151, 658–670, October 26, 2012 ª2012 Elsevier Inc.
where expression levels of a given gene were controlled by

variation at a different locus, likely representing regulatory rela-

tionships between the genes. Most of the loci we identified

in trans belonged to the LPS-treated macrophages (18,082),

followed by 11,658 loci identified in control-treated cells, and

9,344 loci identified in OxPAPC-treated cells, at the 5% FDR

level. We also found a large number of cis associations: 5,217

in the control, 4,587 in the LPS, and 4,747 in the OxPAPC

conditions.

Treatment-specific associations represent an interaction be-

tween genetics and the environment, where specific differences

in gene expression are only observed in the context of an ex-

ternal stimulus. To specifically examine genetic loci influenced

by GxE interactions, we mapped the fold difference between

LPS-treated and control gene-expression levels, or the fold

difference between OxPAPC-treated and control expression

levels. We found 4,805 gxeQTL in LPS and 81 gxeQTL in

OxPAPC conditions in trans, as well as 1,394 cis-gxeQTL in

response to LPS and 219 cis-gxeQTL in response to OxPAPC
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Figure 2. Genome-wide Association of Gene Expression

Association using microarray expression of macrophages in various condi-

tions. Each dot represents a significant association between a transcript and

a SNP. Genomic position of the SNPs and transcripts are shown on the x and

y axes, respectively.

(A) Association in control condition.

(B) Association in LPS condition.

(C) Association in OxPAPC condition.

See also Figure S3 and Tables S2 and S7.
(Table S2 and Figure S3). For example, Ifi205 is a gene that

shows a gxeQTL in cis (Figure 1D), whereas Abca1 shows a

gxeQTL in trans (Figures 5A and 5B) in the LPS condition. Genes

with gxeQTL in LPS but not in OxPAPC were highly enriched for

acetylation (p < 8.2 3 10�25), phosphoprotein (p < 3.2 3 10�18),

and mitochondrial proteins (p < 4.4 3 10�15) using GO. We did

not find significant GO enrichments in the OxPAPC gxeQTL.

Type I and type II errors in association studies can be due to

the influence of confounders such as population structure and

batch effects. These can result in an inflation (too many false

positives) or deflation (too many false negatives) in the asso-

ciation results. We used EMMA to control for spurious asso-

ciations due to population structure, and to verify that there

was no inflation, we computed the inflation factor lambda.

Lambda values over 1 indicate inflation, lambda values under 1

indicate deflation, and lambda of 1 indicates neither. We

computed the inflation factor in our association results and

observed no evidence of inflation, with lambda values ranging

from 0.9 to 1 (Table S2). Association results for all genes and

all conditions can be found on our online database.

Expression ‘‘Hot Spots’’
Previous studies on the genetics of gene expression have

suggested the existence of eQTL hot spots, where a polymor-

phism(s) at a locus is responsible for changes in gene expres-

sion in tens or hundreds of genes (Ghazalpour et al., 2008).

These can be seen as vertical bands in the plots of genome-

wide association of gene expression (Figure 2), where hundreds

of transcripts across the genome were all associated with a

SNP(s) in a locus. To find eQTL hot spots, we divided the ge-

nome into 2 Mb size bins and counted the number of trans-

eQTL genes mapping to each bin.

We observed striking differences in hot spots from cells ex-

posed to the different stimuli. We found 54 significant hot spots

in control-treated cells, 47 hot spots in LPS, 39 hot spots in

OxPAPC, 17 hot spots for LPS gxeQTL, and no hot spots in

OxPAPC gxeQTL (Figures 3 and S4). The majority (145/157) of

the hot spots regulated less than 1% of all eQTL in each con-

dition, and only 3 hot spots, identified in response to LPS, regu-

lated more than 5% of eQTL. A complete list of eQTL hot spot

genome positions, their significance, and the number of genes

regulated by each hot spot can found in Table S3 and in our

online database. We identified several common hot spots in

the different conditions. Although we found a significant overlap

in the transcripts mapping to hot spots that overlap in different

conditions, the majority of the transcripts mapping to each hot

spot were specific to the treatment condition. The number of

hot spots that overlap in the different conditions can be found

in Table S4 and in our online database.
Cell 151, 658–670, October 26, 2012 ª2012 Elsevier Inc. 661
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Figure 3. eQTL Hot Spots

The number of genes mapping to each 2 Mb bin

is shown on the y axis, and the genomic position

of the bin is on the x axis. The horizontal dashed

line represents the significance threshold.

(A) Hot spots in control eQTL.

(B) Hot spots in OxPAPC eQTL.

(C) Hot spots in LPS eQTL.

(D) Hot spots in LPS gxeQTL.

See also Figure S4 and Tables S3 and S4.
The finding of an eQTL hot spot suggests the presence of

a regulator(s). We found a total of eight unique hot spots with

profound changes in gene expression across the genome,

affecting more than 1% of all eQTL. Three of these mapped

to previously known regulators of inflammatory responses,

including tumor necrosis factor alpha, Tnf, in the hot spot at

34–36 Mb on chromosome 17 for LPS-treated cells and in the

LPS-response gxeQTL. We also found a cluster of Serpin genes

adjacent to a hot spot at 110–112 Mb on chromosome 1 in the
662 Cell 151, 658–670, October 26, 2012 ª2012 Elsevier Inc.
LPS and LPS-response conditions.

Serpinb2, which plays a role in adaptive

immunity (Schroder et al., 2010), is a

candidate causal regulator for this

locus. Finally, Interleukin 1a (Il1a) and

Interleukin 1b (Il1b) are candidate genes

in an OxPAPC-specific hot spot at

128–130 Mb on chromosome 2. These

observations suggest that the eQTL

hot spots we identified are biologically

meaningful, and hence that the hot

spots in loci not previously implicated

in inflammation will likely reveal novel

regulators of inflammation.

Expression Hot Spots Reveal
a Regulator of Inflammatory
Responses
To identify novel regulators of inflam-

matory responses, we experimentally

validated one of the hot spots in LPS-

treated cells. The locus is in mouse

chromosome 8 at approximately 119 Mb

and controls a large number of eQTL,

6% of eQTL in LPS and 13.5% of LPS

gxeQTL. There are 12 candidate genes

in the locus based on the linkage dis-

equilibrium (LD) structure. To narrow

down the list of candidate genes for ex-

perimental validation, we selected genes

that showed a difference in expression

among the strains and genes with docu-

mented coding nonsynonymous SNPs

and excluded genes whose expres-

sion was undetectable by quantitative

PCR (qPCR) in primary macrophages.

These criteria narrowed down our list
to six genes: 2310061C15Rik, 4933407C03Rik, Atmin, Gcsh,

1700030J22Rik, and Gan. Among these, 2310061C15Rik had

a strong cis-eQTL in LPS-treated cells (p = 1.9 3 10�9).

For experimental validation, we used small interfering RNA

(siRNA) to knock down expression levels in each of the six

candidate genes in primary mouse macrophages treated with

LPS. We were successful in obtaining approximately 50%

knockdown in four of the candidates, 2310061C15Rik,

4933407C03Rik, Atmin, and Gcsh. However, despite repeated
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A Figure 4. Expression Levels in LPS Condi-

tion after Knockdown of Candidate Genes

(A) Microarray expression levels in LPS con-

dition for 273 genes affected by knockdown

of the candidate genes Gcsh (siGcsh) and

2310061C15Rik (siC15Rik). For each gene on the

y axis, expression is plotted as the mean of the

siRNAs (x axis) that significantly affected ex-

pression relative to the scramble control on a

log2 scale.

(B) Microarray expression levels for the genes Il1b,

Csf1, Il6, Ccl2, and Serpine1 after knockdown of

the candidate gene 2310061C15Rik (C15Rik).

Data are presented as mean ± SD. See also

Table S5.
attempts, we were unable to obtain consistent knockdown of

either 1700030J22Rik or Gan, possibly due to the low level of

expression in the case of the 1700030J22Rik gene. To assess

the effect of knockdown on trans-eQTL genes predicted to be

regulated by the chromosome 8 locus, we used qPCR to

measure expression of 19 trans-eQTL genes. In these initial

experiments, we saw that 8 of the 19 genes tested (42%) were

validated reproducibly, and their expression was affected by

knockdown of either 2310061C15Rik in 6 of the 8 genes or

Gcsh in 2 of the 8 genes. We did not observe reproducible

differences in the 19 trans-eQTL genes after knockdown of the

other candidate genes.

To more comprehensibly validate the chromosome 8 hot spot,

we used microarrays to examine global gene expression. For

this, we again used siRNA to knock down the two candidate

genes, 2310061C15Rik and Gcsh, because qPCR showed that

they have the highest effect on target genes. We used micro-

arrays to profile the transcriptome after knockdown and deter-

mined how many of the genes that mapped to the chromosome

8 hot spot locus as eQTL were affected by the knockdown

(Figure 4). Knockdown of 2310061C15Rik or Gcsh had sig-

nificant effects on 173 and 128 genes, respectively (Figure 4A

and Table S5). The number of genes affected in each knock-

down experiment was significantly higher than expected by

chance based on random samplings in LPS-treated cells (p =
Cell 151, 658–670,
1.11 < 1 3 10�16 for 2310061C15Rik

and p < 1 3 10�16 for Gcsh). Similar

results were observed for the LPS-

response condition (Table S5).

To assess the functional significance

of genes validated in each knockdown

experiment, we looked at the GO enrich-

ment terms for each list. The GO enrich-

ments for genes influenced by siRNA

knockdown of 2310061C15Rik were

immune response (p = 9.33 10�11), regu-

lation of T cell activation (p = 7.0 3 10�5),

cytokines (p = 2.0 3 10�4), and Toll-like

receptor signaling (p = 4.0 3 10�4) in

the LPS condition and included inflam-

matory cytokines and LPS primary-

response genes such as lll1b, Csf1, Il6,
Ccl2 (MCP-1), and Serpine1 (Figure 4B). In contrast, the genes

influenced by siRNA knockdown of Gcsh were enriched in

GTPase activity (p = 3.3 3 10�3) and were not enriched in

immune response or Toll-like receptor signaling (p = 0.62). Our

validation results confirm that the chromosome 8 eQTL hot

spot represents biologically meaningful regulatory relationships

between candidate genes and trans-eQTL mapping genes.

However, we also observed that more than one gene in the

locus was responsible for regulation of the trans-eQTL. Finally,

our results indicate that 2310061C15Rik is a novel regulator of

inflammatory responses underlying the chromosome 8 eQTL

hot spot.

Using eQTL to Find Regulatory Relationships
and Candidate Gene Identification
One of the goals of systems genetics is to understand the

behavior of the system as a whole by identifying all the elements

present in the system and understanding the relationships

among them. The eQTL identified in our study provide a suitable

resource to understand the gene expression regulatory circuits

present in macrophages when they are exposed to inflammatory

stimuli such as LPS and OxPAPC. This information can also be

used to understand the biological networks underlying traits

with an inflammatory component. Toward this end, we have

developed an online database, and below we describe how it
October 26, 2012 ª2012 Elsevier Inc. 663
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Sample plots for a given gene of interest that can be obtained from our online

database.

(A) LPS response of Abca1.

(B) Genome-wide association for the expression of Abca1.

(C) Relative expression levels among mouse strains of the HMDP in macro-

phages and different tissues.
facilitates discovery of new and/or pre-existing relationships

among genes and clinical traits.

Gene Expression, Correlations, GxE, and eQTL

Here are some of the types of data that can be obtained for

any gene of interest represented in the array, as an example

for Abca1: (1) a user can query and download in tabular or

graphical format our results for genetic, environmental, and

GxE effects (Figure 5A). The tabular format includes ANOVA

p values, FDRs, the average fold-change in response to a treat-

ment, and the number of strains that show a fold difference

above two for each of the conditions. (2) The user can obtain in

tabular format the results for gene-gene expression correlations

between the gene of interest and all other genes. (3) A user can
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obtain in tabular or graphical format all eQTL association results

for the gene of interest, in any of the conditions (Figure 5B). The

tabular format also conveys detailed information such as the

p value for the association, specific SNP name and coordinates,

and links to the UCSC genome browser at that locus. (4) One

can also obtain gene-expression profiles, correlations, and

eQTL results from additional tissues (liver and bone) previously

profiled in the HMDP and compare expression in macrophage

control, LPS, and OxPAPC to adipose, aorta, heart, and liver

for a gene of interest (Figure 5C). Similarly, one can obtain results

for correlations, eQTL, or clinical QTL from additional genetic

studies in mouse intercrosses and in human endothelial cells

exposed to OxPAPC. All of these can be used to compare and

contrast results between these data sets and the macrophage

data set presented here.

Regulatory Relationships between Genes

Our database allows us to screen for novel genes that regulate

a gene of interest using trans-eQTL for the gene. Each trans-

eQTL is hypothesized to harbor at least one gene (e.g., geneA)

that is responsible for modulating the expression of a gene of

interest (e.g., geneB). However, because the locus may carry

more than one gene (e.g., several genes can be geneA), the

limiting step in identifying such interactions is to select the

appropriate candidate regulator. To do this, we can use various

parameters such as the following: linkage disequilibrium to

define the physical boundaries of the locus; the median expres-

sion of the genes in HMDP strains to exclude genes that are

very lowly expressed in the cell; presence of cis-eQTL to select

genes that vary in expression in HMDP strains as a result of

genetic variation in or near the gene; coding nonsynonymous

SNPs to select genes that have structural variation; and previ-

ously documented relationships in the published literature.

As an example, we used trans-eQTL and the various criteria

described above to establish putative regulatory relationships

for Abca1, a gene involved in reverse cholesterol transport

(Figure 6). Expression of Abca1 maps to four different loci in

LPS-treated cells (Figure 5B). A locus on chromosome 17 con-

tains Tnf, a gene known to regulate Abca1 (Edgel et al., 2010).

The locus on chromosome 4 contains Toll-like receptor 4,

Tlr4. Although previous studies have suggested a connection

between Toll-like receptor signaling and cholesterol efflux path-

ways (Zhu et al., 2010), our observed trans-eQTL suggests that

Abca1 itself is regulated by Tlr4. Another locus on chromosome

17 is roughly 1 Mb away from Lnpep, a gene involved in choles-

terol metabolism, which suggests regulation of Abca1 by Lnpep.

Based on a fourth trans-eQTL, 2310061C15Rik is also hypo-

thesized to regulate Abca1, as there is a cis-eQTL for the can-

didate gene 2310061C15Rik. Similarly, extending the network

connections to known published associations and novel asso-

ciations found through the trans-eQTL in our data set created

a link between reverse cholesterol transport and adipogenesis

via Pparg and Adipor2 (Chinetti et al., 2004; Hamm et al.,

1999). Also, combining known relationships with novel trans-

eQTL extends the connections of Abca1 to a host of inflam-

matory mediators through Tnf (Figure 6). In particular, two

candidate genes underlying eQTL hot spots, on chromosomes

1 (Sepinb2) and 8 (2310061C15Rik), demonstrated high degrees

of interaction with inflammatory mediators and with each other
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Known regulatoion
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Figure 6. Abca1 and LPS-Activation Regu-

latory Network Defined by trans-eQTL

Causal regulatory relationships between genes

were defined using LPS trans-eQTL. Novel rela-

tionships are shown with red lines, and previously

described relationships are in black lines. Dotted

lines are previously described relationships that

were not identified in the LPS trans-eQTL. See also

Figure S5.
(Figures 6 and S5), as Serpinb2 maps to 2310061C15Rik in the

chromosome 8 hot spot.

Identification of Positional Candidate Genes Involved

in Inflammation

Our database of macrophage eQTL can also be used to prioritize

genes involved in complex traits. Macrophages play critical roles

in many conditions that involve acute and chronic inflammation,

such as susceptibility to infection and atherosclerosis, and

previous studies have identified hundreds of regions in the

genome that are linked to immune-related traits in mice, i.e., clin-

ical QTL. The QTL identified in these studies harbor a causal

gene(s) influencing the trait of interest. Our online database

allows one to narrow down candidate genes in clinical QTL

by looking for genes with a cis-eQTL in a region of interest. To

illustrate this utility, we obtained genomic coordinates for previ-

ously identified QTL fromBiomart and used cis-eQTL to prioritize

candidate genes.

We found cis-eQTL candidate genes in 145 immune-related

clinical traits, which have been previously identified in mouse

QTL studies. In total, we identified 514 candidate genes for

these 145 clinical QTL. These include atherosclerosis (Fig-
Cell 151, 658–670,
ure 7A), susceptibility to Salmonella

typhimurium (Figure 7B), systemic lupus

susceptibility, autoimmune susceptibility,

arthritis, response to trypanosome infec-

tion, leishmaniasis resistance, cytokine

production, and TNF-lethal shock sus-

ceptibility. Candidate cis-eQTL mapping

genes in atherosclerosis QTL are shown

in Figure 7A. Interleukin 10 has been

shown to play a role in atherosclerosis

(Mallat et al., 1999), and we found

a related gene, Interleukin 10 receptor

a (Il10ra), as a candidate gene for the

atherosclerosis QTL in mouse chromo-

some 9 at 44–46 Mb. We also found the

gene 2310061C15Rik, which we exam-

ined above in an eQTL hot spot, as

a candidate cis-eQTL for the atheroscle-

rosis QTL in mouse chromosome 8,

identified in a cross between strains

C57BL/6J and A/J. Based on our find-

ings, this gene regulates the expression

of several inflammatory genes and is

likely to contribute to atherosclerosis.

We identified several candidate cis-

eQTL mapping genes in QTL for suscep-
tibility to S. typhimurium (Figure 7B). These include genes with

previously described functions in immunity, such as Ifi204 in

the distal mouse chromosome 1 QTL, the NOD-like receptor

family genes Naip1, Naip2, and Naip5 in the distal chromosome

13 QTL, and the lymphocyte antigen genes Ly6a and Ly6d

in chromosome 15. We also found that Ppp3ca and Dok1 are

candidate genes, and although no role in susceptibility to infec-

tion has been described for these genes, Ppp3ca gene-targeted

mice showdecreased T cell proliferation (Zhang et al., 1996), and

Dok1 null mice show increased response to LPS (Shinohara

et al., 2005). A complete list of candidate genes for each of the

145 immune-related clinical QTL we examined can be found in

our online database.

DISCUSSION

The finding of common genetic interactions has important

implications for the study of common diseases and other com-

plex traits. Human genome-wide association studies (GWAS)

are poorly powered to identify genetic interactions, and thus,

human geneticists have tended to ignore them. But studies in
October 26, 2012 ª2012 Elsevier Inc. 665
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mice suggest that gene-gene and gene-environment inter-

actions are prevalent, and our results are consistent with that

conclusion. Heritability calculations in human studies assume

an additive model and, if common disease traits have a large

nonadditive component, this would substantially inflate the

heritability estimates (Zuk et al., 2012). Interactions add a level

of complexity that may have broad implications for the develop-

ment of treatments and for diagnosis. Nevertheless, the use of

the HMDP to detect genetic effects is limited to identifying

common genetic variants, as opposed to rare or strain-specific

effects, similar to human GWAS. This limitation is inherent to

the current panel of HMDP strains and to the use of genome-

wide association itself. Additional studies in more strains, in

humans, and using DNA sequencing will complement the

current work and help us to identify rare variants influencing

inflammatory phenotypes.

Overall, our data strongly support that GxE interactions play

a major role in the regulation of genome-wide gene expression

and inflammatory responses. We observed that the expression

of thousands of genes was regulated by naturally occurring

genetic variation or environmental stimuli. A large proportion of

these were also controlled by GxE interactions in LPS and

OxPAPC (Tables S1 and S2), with a much more robust response

to LPS than to OxPAPC. It is possible that the reason we found

the majority of the gxeQTL in the LPS condition is that LPS elicits

more robust changes in gene expression in the cell, and hence

we have more power to detect these. Macrophages may show

a minimal response to OxPAPC, or they may respond only after

prolonged exposure to OxPAPC. Additional time-dependent

genetic studies are still required to further elucidate the macro-

phage response to OxPAPC.

We observed several eQTL hot spots that controlled a large

fraction of all eQTL (>5%) only in the presence of LPS, but not

in control or OxPAPC conditions. In these environmental-

specific eQTL hot spots, we found both known and novel

regulators of inflammation. We used a treatment-specific eQTL

hot spot to identify 2310061C15Rik as a novel regulator of

inflammatory responses. This was supported by the following:

(1) trans-eQTL that map to the hot spot were highly enriched in

Toll-like receptor signaling, immune-response genes, and cyto-

kines; (2) there was an LPS treatment-specific cis-eQTL for the

expression of 2310061C15Rik, suggesting that it was a strong

candidate gene for the locus; (3) trans-eQTL mapping genes

were differentially expressed when we used siRNAs to silence

expression of candidate genes (Figure 4); (4) the genes affected

by knockdown of 2310061C15Rik were enriched in immune-

response genes.

Numerous studies have identified eQTL hot spots in geneti-

cally diverse populations (Ghazalpour et al., 2008), but very

few eQTL hot spots have been experimentally validated in

yeast (Zhu et al., 2008), whereas none have been validated in

mammals. This lack of validation may be due to a variety of

reasons, such as GxE interactions. Synergistic and compen-

satory effects can also account for lack of validation, as one

may need to simultaneously target two ormore genes to observe

an effect in some of the trans-eQTL genes. Hot spots may be

complex loci, and we also found Gcsh as yet another candidate

gene at the chromosome 8 hot spot. Both 2310061C15Rik and
Gcsh combined could only account for the regulation of ap-

proximately 12% of the total genes that mapped to this locus.

The remaining 88% genes may be regulated by other candidate

genes not validated in this report. Also, the siRNA knockdown

experiments that we performed may not exactly mimic the life-

long effects of natural genetic variation on cellular processes.

Likewise, the 50% knockdown in expression of candidate

genes that we achieved may not be sufficient to observe an

effect on trans-eQTL genes, or some of the siRNAs may have

off-target effects. Finally, lack of validation may be due to false

positives.

Although very little is known about the biology of

2310061C15Rik, domain prediction algorithms show that it has

homology to the mitochondrial protein cytochrome c oxidase

biogenesis protein Cmc1. Consistent with this, the LPS gxeQTL

that map to the chromosome 8 hot spot were highly enriched

in mitochondrial proteins (p = 5.3 3 10�6), and mitochondrial

proteins and processes were the third most highly enriched

category among all LPS eQTL (p = 6.3 3 10�15). Recent reports

suggest that mitochondria integrate signals from infection and

tissue damage, as well as signals from metabolic processes

and reactive oxygen species, to trigger an appropriate inflam-

matory response (Zhou et al., 2011). Notably, a previous linkage

study for atherosclerosis found a locus that coincides with the

physical location of 2310061C15Rik on chromosome 8 (Chen

et al., 2007). This warrants further work to investigate whether

genetically modified mice for the 2310061C15Rik gene will

exhibit differential susceptibility to atherosclerosis.

eQTL hot spots may be due to genetic differences that affect

gene expression, protein structure, or regulatory elements that

control expression of a causal gene(s). The causal genes may

be transcription factors, or genes that affect transcription

factor activity, such as the hot spot we found in chromosome

2, which maps to the cytokine Interleukin 1. We also observed

that genes controlled by the chromosome 8 hot spot included

transcription factors (e.g., Irf1), cytokines (e.g., Il6), and other

regulatory proteins (e.g., Mapk3). Hence, we can speculate

that a causal gene may influence expression of a target gene,

which in turn regulates downstream genes in multiple regu-

latory pathways, so that a hot spot may reflect a signaling

cascade triggered by the causal gene underlying the hot spot.

It is also possible that eQTL hot spots are driven by epigenetic

differences. Using reduced representation bisulfite sequencing

in liver genomic DNA, we found over 2,000 CpG sites that vary

in DNA methylation among mouse inbred strains (data not

shown). The changes in DNA methylation levels were accom-

panied by differences in expression of nearby genes and by

nearby eQTL in 106 genes. These observations suggest that

eQTL and eQTL hot spots are driven by genetic, environmental,

and also epigenetic differences among individuals.

We believe that our approach has some important advantages

and builds upon concepts proposed in previous work. Studies

in a mammalian model organism such as the mouse are directly

applicable to biological processes and pathways in humans.

Because the HMDP consists of permanent inbred strains, we

propose that the data generated here constitute a cumulative

resource that can be used for the integration of genetic, gene-

expression, and phenotype data for the understanding of
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complex immune-related traits. In conclusion, we observed that

gene-by-environment interactions occur abundantly through-

out the genome. As such, the combined success and failure of

any GWAS, as we have witnessed in recent years, will be largely

linked to the functional dependency of causal variants to the

environmental conditions, and how these variants interact with

them.

EXPERIMENTAL PROCEDURES

Online Database

Results can be accessed at http://systems.genetics.ucla.edu/data.

Mice

Male mice were obtained from the Jackson Laboratories (Bar Harbor, ME,

USA). Mice were housed in pathogen-free conditions according to NIH

guidelines until 16 weeks of age, then fasted overnight for 16 hr prior to

euthanasia. A complete list of strains can be found in Table S6 and in the

online database.

Macrophage Culture Conditions

We harvested primary macrophages using four mice per strain, by intraperito-

neal lavage 4 days after injection with thioglycollate (BD, Sparks, MD, USA).

All mice were injected with the same batch of thioglycollate. We pooled cells

from different mice of the same strain and plated duplicates or triplicates per

condition, per strain. We used additional replicates for some of the strains to

determine experimental reproducibility (Table S6). The next day, cells were

incubated for 4 hr with 1%FBS DMEM media in control-treated cells, media

plus 2 ng/ml LPS (List Biological Inc., Campbell, CA, USA), or media plus

50 mg/ml OxPAPC.

Expression Array Profiling

Weprofiled RNAwith Affymetrix HTMG-430A arrays from 86 strains in control,

89 in LPS-treated cells, and 80 in OxPAPC-treated cells (Table S6). We used

the robust multichip average (RMA) method to determine the hybridization

signals.

Reproducibility of Microarray Data

We arrayed different samples of the same strain in two different experiments

for five strains in the LPS condition and for seven strains in the control condi-

tion. We used hierarchical clustering of samples using all microarray data

and the ‘‘spearman’’ distance metric. To examine the distribution of the vari-

ance in gene expression, we computed the variance for each gene, using all

strains treated with LPS for inter-strain variance and all samples for a given

strain for the intra-strain variance. We plotted the empirical cumulative

distribution of these variances and compared the distributions with the

Kolmorogov-Smirnov test. We took the mean of each variance distribution

to compare the fold difference of the distributions.

Viability Assay

We obtained macrophages from four strains in this study and five strains from

the HMDP not included in this study (see Extended Experimental Procedures

and Figure S2). We treated the cells the next day using control or LPS media

for 4 hr and then incubated them with the cell-permeable dye 2 mM calcein

AM (Molecular Probes). As a negative control, we added 70% methanol to

control-treated cells to kill the cells, then incubated them in calcein AM. We

read the fluorescent intensity at 530 nm. We used a t test to compare the

two groups.

Environmental and Genetic Analysis of Variance

To examine genetic effects, we used one-way ANOVA for each of the

transcripts in the array in strains treated with control and used the strain

label as the grouping label variable, as previously described (Smith and

Kruglyak, 2008). For environmental effects, we compared control versus

treated samples using one-way ANOVA and the treatment label as the vari-
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able. To find genes that were regulated by at least one treatment, we

compared all samples using one-way ANOVA with three grouping variables

(control, LPS, and OxPAPC). For GxE interactions, we used a two-way

ANOVA with interaction model, using strains in all treatments, with both

treatment and strain labels as the variables. We calculated FDR for each

of the effects and selected genes with FDR < 5%. For GxE interactions,

we selected genes significant for GxE, genetic, and environmental effects.

Because there are genes with more than one microarray probe set, we re-

ported the number of unique genes that were regulated at least 2-fold in at

least five strains.

Genetic Association and Genotyping

Genotyping

Mouse inbred strains were previously genotyped by the Broad Institute (http://

www.broadinstitute.org/mouse/hapmap) and the Wellcome Trust Center for

Human Genetics. We selected informative SNPs with a minor allele frequency

greater than 10% and missing values in less than 10% of the strains for each

SNP. This criteria resulted in 96,518 SNPs in control, 95,733 in LPS, 94,510

in OxPAPC, 95,649 in LPS-response, and 94,210 in OxPAPC-response

conditions.

Association Mapping

We used EMMA to test for association and to account for population struc-

ture and genetic relatedness among strains. We applied the linear mixed

model:

y=m+ xb+u+ e;

where m = mean, x = SNP, b = SNP effect, and u = random effects due to

genetic relatedness, with Var(u) = sg
2K and Var(e) = se

2, where K = IBS

(identity-by-state) matrix across all genotypes in the panel. We computed

a restricted maximum likelihood estimate for sg
2 and se

2, and we performed

association based on the estimated variance component with an F test to

test b does not equal 0.

Local and Distant eQTL Definition

eQTL were defined as local or cis if the peak association was within a 4 Mb

interval, flanking 2 Mb on either side of the genomic start site of the gene.

eQTL were defined as distant or trans by selecting the peak association per

chromosome per gene, excluding loci that mapped in cis.

Genome-wide Alpha for cis-eQTL

Weused the qvalue package in R to calculate FDR. For each gene, we selected

all association p values in the 4 Mb interval and used all the p values for all

genes to calculate q values. We estimated the FDR separately for each

treatment and selected FDR < 5% as follows: control p < 8.88 3 10�3, LPS

p < 6.74 3 10�3, OxPAPC p < 8.56 3 10�3, LPS GxE p < 1.15 3 10�3, and

OxPAPC GxE p < 1.38 3 10�4.

Genome-wide Alpha for trans-eQTL

Due to the computational complexity associated with evaluating q values

for over 2 billion p values, we computed the FDRs by taking the median FDR

for 100 samples, each containing 5 million randomly selected p values

from the original calculated association p values (Ghazalpour et al., 2008).

We estimated the FDR separately for each treatment and selected FDR <

5% as follows: control p < 1.09 3 10�5, LPS p < 9.58 3 10�6, OxPAPC p <

9.91 3 10�6, LPS GxE p < 1.10 3 10�6, and OxPAPC GxE p < 6.31 3 10�8.

Additional p value thresholds for different FDR cutoffs can be found in

Table S7 and our online database.

Inflation

We calculated the inflation factor lambda by taking the chi-square inverse

cumulative distribution function for the median of the association p values,

with one degree of freedom (DF), and divided this by the chi-square proba-

bility distribution function of 0.5 (the median expected p value by chance)

with one DF. Because it was not feasible to calculate this statistic using

all p values, for each data set, we calculated lambda using a random sample

of 1,000 p values, 1,000 times, and took the average and standard devia-

tion (SD) of lambda. We also selected 5 million p values, 100 times, in

the LPS GxE condition and obtained comparable results in the 5 million

p value sets (lambda = 0.987 ± 0.001) and 1,000 p value sets (lambda =

0.991 ± 0.074).

http://systems.genetics.ucla.edu/data
http://www.broadinstitute.org/mouse/hapmap
http://www.broadinstitute.org/mouse/hapmap


eQTL Hot Spots

For each condition, we divided the genome into 2 Mb windows (the average

size of linkage disequilibrium blocks in the HDMP strains) and counted the

number of genes with significant eQTL in each window. Consecutive windows

were merged if tag SNPs in the windows were correlated with r2 > 0.5. We

used the Poisson distribution to determine whether individual windows con-

tained a larger than expected number of eQTL. Hot spots were considered

significant if the number of genes with eQTL in a window was above 30 for

control, 39 for LPS, 26 for OxPAPC, 21 for LPS gxe interaction, and 5 for

OxPAPC gxe interaction.
Knockdown Experiments

We obtained macrophages from C57BL/6J mice as described above. The day

after plating, we added siRNAs (QIAGEN) complexed with Lipofectamine LTX

(Invitrogen, Carlsbad, CA, USA) to the cells for 6 hr, then washed the cells.

After 48 hr, we treated cells with control media or media plus LPS for 4 hr,

then harvested total RNA. We determined the level of knockdown from

cDNA using quantitative PCR (Roche, San Francisco, CA, USA) and normal-

ized data using Rpl4 as an internal control. We used at least two siRNAs per

candidate gene.

Analysis of Knockdown Data

For each candidate gene, we used one-way ANOVA to compare the scramble

siRNA and siRNAs to target the candidate gene, with the siRNA label as the

grouping variable. We selected genes significant in the ANOVA test at the

FDR < 5% and that were affected by at least two of the siRNAs used for

the same candidate gene, in the same direction, relative to the scrambled

siRNA.

Random Samplings

We carried out random samplings of transcripts in the microarray data. For

each candidate gene knocked down and random sampling, we selected

significant genes in the same way we did for the nonrandom data above. We

then repeated this analysis for 1,000 random samplings and determined the

average number of genes differentially expressed by chance (lambda). To

determine whether our results were higher than expected by chance, we

used the cumulative Poisson distribution, taking the number of genes differen-

tially expressed in the nonrandom data (X) and lambda.
Clinical QTL

We downloaded QTL information from Biomart (http://biomart.informatics.jax.

org/) for immune-related traits and from Chen et al., (2007) for atherosclerosis

QTL. We used the peak linkage position of the QTL, selected a 2 Mb window

around the QTL to search for cis-eQTL candidate genes, and selected all cis-

eQTL physically located in the 2 Mb window.
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All microarray data from this study are deposited in the NCBI GEO (http://www.
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