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ABSTRACT To attempt to understand the
physical principles underlying protein crystal-
lization, an algorithm is described for simulat-
ing the crystal nucleation event computation-
ally. The validity of the approach is supported
by its ability to reproduce closely the well-
known preference of proteins for particular
space group symmetries. The success of the
algorithm supports a recent argument that
protein crystallization is limited primarily by
the entropic effects of geometric restrictions
imposed during nucleation, rather than par-
ticular energetic factors. These simulations
provide a new tool for attacking the problemof
protein crystallization by allowing quantita-
tive evaluation of new ideas such as the use of
racemic protein mixtures. Proteins 28:515–521,
1997. r 1997Wiley-Liss, Inc.
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INTRODUCTION

The growing capacity of computers is allowing
scientists to model complex nonequilibrium systems
that would otherwise be difficult to investigate by
analytical techniques. The nucleation and growth of
protein crystals is such a system.Although consider-
able attention has been given to the protein crystalli-
zation process, theoretical understanding of the phe-
nomenon is still in its early stages.1,2 For instance,
the connection between space group symmetry and
the probability of nucleation has not yet been stud-
ied; we will attempt to demonstrate that nuclei
preferentially adopt certain space groups symme-
tries.

To study this phenomenon, we present a simula-
tion to construct the critical nuclei of protein crys-
tals. One of the principal questions we ask is whether
the symmetries of the simulated nuclei match the
strikingly nonuniform distribution of space group
symmetries found in the Brookhaven Protein Data
Bank (PDB). Several attempts have already been
made to understand the highly nonuniform occur-
rence of space groups for crystals of both small
molecules3–5 and proteins.6,7 Previous work of two of

the authors successfully related space group frequen-
cies to the number of rigid-body degrees of freedom
inherent in each symmetry.6 Unlike the above work,
however, the technique presented here has the capac-
ity of generating quantitative predictions of this
distribution for crystal nuclei.

Our approach attempts to mimic the physical
reality of protein crystallization to the extent that it
is feasible with current computational power. We
present four hypotheses that underlie the algorithm
and attempt to justify the assumptions on physical
grounds.

We assume that crystallization is a nucleated
phenomenon; there is a positive free-energy activa-
tion barrier to the formation of a nucleus of a few
hundred molecules. Once the nucleus has formed,
the growth process is thermodynamically favored. It
is still unknown experimentally whether the nucleus
is a crystallographically ordered or disordered aggre-
gate of proteins. Because the primary purpose of this
simulation is to study the effect of space group
symmetries on nucleation and not to model the
thermodynamics of crystal growth, we assume that
the nucleus is crystallographically ordered from the
start. If, in fact, protein crystal nuclei are disordered,
our conclusion would not be significantly affected
because our ordered aggregate must, at some step,
appear within the disordered nucleus. In this case,
we shall refer to the emergence of crystalline order
as nucleation and not to the initial formation of a
disordered cluster.

Next, we suggest that for a crystal to form, the set
of all possible contacts between two identical mono-
mers must be characterized by a few low-energy
contacts that are separated from all others by a
positive energy gap; in the case in which the lowest
energy contacts are greatly degenerate or the energy
gap approaches zero, it would not be possible to
establish long-range order in an aggregate. Similar
ideas have been invoked in connection with protein
folding.8 Second, the few lowest-energy contacts
must correspond to molecular orientations close to
the crystallographically allowed values (0°, 60°, 90°,
120°, or 180°) for the aggregate to be well ordered.
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Finally, we postulate that attachment of each new
molecule must initially occur reversibly for it to
sample many contacts until it binds in accordance
with one of the low-energy contacts. Our simulation
attempts tomimic these three conditions by allowing
monomers to contact each other in a small number of
ways, all ofwhich are consistent with allowed crystal-
lographic angles. Inherent in the algorithm is the
restriction that the crystals are formed out of mono-
mers, with only one molecule per asymmetric unit.
Applying the concepts of the first hypothesis, we

initially construct clusters consisting of four mol-
ecules to define a limited number of low-energy
contacts. We choose a cluster of size four based on a
recent result6 regarding the minimum number of
distinct contact types (or unrelated spatial transfor-
mations) required to achieve connectivity between
molecules in the various space group symmetries.
(We use the term contact to refer to both the actual
touching of two molecules and the symmetry opera-
tion or spatial transformation that defines the posi-
tion of one with respect to the other.) The minimum
number of distinct contacts ranges from two to five,
but space groups for which this number is greater
than three are almost never observed. The disposi-
tion of four molecules can define as many as three
unrelated transformations: from molecule 1 to 2, 1 to
3, and 1 to 4. Other possible pairwise relationships
(e.g., 2 to 3) are inferred by combinations of the
original three transformations. Therefore, clusters
of four molecules are necessary and sufficient to
represent most of the space groups (52 of 65 total,
including all that are observed with any regularity in
the database).

To apply the second hypothesis, we restrict our
attention to ‘‘crystal nucleation space,’’ the space of
molecular arrangements that may lead to a crystal.
Because crystal packings of molecules allow only
two-, three-, four- or sixfold rotational symmetries,
as well as translations, we must restrict the rotation
angles between molecules to allowed values (0°, 60°,
90°, 120°, or 180°). The rotation angle is evaluated by
computing the 3 3 3 matrix that brings the coordi-
nates of the two molecules, with respect to their
centers of mass, onto each other. The angle is then
given by the equation

Trace(R) 5 1 1 2 cos(u) (1)

where R is the rotation matrix and u the rotation
angle. To arrive at ideal intramolecular rotation
angles during the construction of the four-molecule
cluster, we retain only pairs of molecules whose
relative orientation lies within 10° of an allowed
crystallographic value.AMonte Carlomove selection
algorithm is then used to further minimize the
differences between the actual and ideal values of
the angles. This process inevitably raises the intermo-
lecular energy. However, once the ideal angle is

achieved, we further relax the contact, with the
angle fixed, to find the local energy minimum. Limit-
ing our attention to ‘‘crystal nucleation space’’ should
not affect the distribution of crystalline nuclei; the
effect is simply to screen out noncrystalline arrange-
ments rapidly.

Finally, applying the principles of our third hypoth-
esis, we must ensure that new molecules added to
our original cluster are attached only by using
contacts randomly selected from the list defined
above.Accordingly, each new molecule is attached by
randomly selecting one of the operations derived
from the four molecule prenucleus and applying it to
one of the molecules already in the cluster. This is
repeated, if it is possible to do so without having
molecular collisions, until the cluster contains 200
molecules. The number 200 is chosen because it is
the approximate size of experimentally measured
critical nuclei for proteins, nuclei that self-propagate
into amacroscopic crystal.9 The pairwise transforma-
tions between the 200 monomers are sufficiently
numerous to permit us to evaluate the degree to
which a given nucleus is ordered, as defined below,
and thus whether it is crystalline or not. In the case
of a crystalline cluster, we establish its space group
symmetry.

METHODS

The molecules we use in our simulation are de-
signed to be roughly globular with surfaces that
contain ‘‘sticky’’ patches and thus share some basic
properties with real proteins. Otherwise, we have
not made any attempt to make our molecules re-
semble proteins in detail, and hence the results of
our simulations should apply to all molecules with
these characteristics. The molecules are generated
as follows: Each one consists of ten overlapping
spherical particles (of radius 5–7 Å) whose centers
are randomly distributed on the surface of a sphere
of radius 15 Å. The molecule is kept rigid throughout
the simulation and hence has only three transla-
tional and three rotational degrees of freedom. The
particles of different molecules interact via pairwise
potentials. The potentials are square wells with a
hard core repulsive component for interparticle dis-
tances ,10 Å to 14 Å and an attractive component
extending about 2 Å beyond that. The well’s origin,
width, and depth (from 0 to 21.0 in arbitrary energy
units) are randomized during each run, as are the
positions of the particles that comprise the molecule.

A flowchart describing the algorithm is shown in
Figure 1. The first two molecules are assembled
using a Monte Carlo algorithm, with the second
molecule initially oriented randomly with respect to
the first and moved 50 Å from the first in a random
direction. The two molecules are brought into con-
tact using a Metropolis sampling algorithm10 in
which the total energy, the sum of the pairwise
energies, is minimized for 100 steps. The two mol-
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ecules are only allowed to diffuse along the vector
connecting their centers of mass. This fact greatly
restricts their degrees of freedom and hence allows
them to come together in few steps. This process does
not emulate real diffusion; it is simply used to
generate random starting conformations.

The final arrangement is rejected if the rotation
angle between the two molecules is not within 10° of
a crystallographically allowed value (0°, 60°, 90°,
120°, 180°). The rotation axis relating the first two
molecules is defined to lie along the a axis of the
crystal lattice, which is predestined to be the axis of
highest rotational symmetry in the crystal; if the
molecules are related by a translation, we continue

to attach other molecules until one that is related by
a rotation allows the a axis to be defined.

The third and fourth molecules are attached as
follows: An internal vector, v, of the first molecule is
defined parallel to the a axis. Because the second
molecule is simply rotated about the a axis, it must
also have its v vector parallel to it. For all noncubic
space groups, the subsequent molecules must have
their v vectors either parallel or antiparallel to the a
axis. This reduces the rotational degrees of freedom
of the third and subsequent molecules from three to
one and is essential in rendering the procedure
presented here computationally feasible. To deter-
mine the disposition of the third molecule relative to
the first two, its v vector is chosen randomly to lie
either parallel or antiparallel to the a axis.As before,
we randomly select a vector to displace this mol-
ecule’s center of mass away from that of the first
molecule by 50 Å, randomly rotate it about the a axis
(once again discarding the molecule if its orientation
relative to other molecules is inconsistent with crys-
tallographic symmetry), and bring the molecule into
contact with the others by the same procedure as
before. Once the molecule’s contact energy is mini-
mized, the rotation angle is adjusted, as explained
above, to lie within 1° of its allowed value. A fourth
molecule is attached in the same manner. This
cluster of four molecules defines as many as three
unrelated contacts or transformations between mol-
ecules.

Starting from the first molecule, we randomly
choose a contact from a set containing the original
three contacts and their inverses (if they are dis-
tinct) and attempt to add a fifth molecule to the
cluster corresponding to this transformation. If the
new molecule overlaps any of the existing ones, then
it is rejected. Otherwise, it is added to the cluster. We
continue to add molecules to the first protein until all
attempts to use one of the known contacts leads to
the addition of a molecule that closely overlaps one of
the preexisting ones.

At this point, nomore molecules can be attached to
the first, so the procedure is continued with the
addition of as many nonoverlapping molecules as
possible to each successive protein molecule. The
process is repeated until a cluster of 200 molecules is
obtained but terminates if it becomes impossible to
reach a cluster of this size. The fact that the protein
attachments are saturated sequentially is also an
artifact of our simulation that does not reflect the
random attachments during real crystal growth.
However, we believe that this fact does not signifi-
cantly affect the final distribution of nuclei.

One limitation of the present algorithm is that it
does not allow us to generate crystals in some cubic
space groups. However, this limitation in the simula-
tion is not too severe, because monomeric proteins
very rarely crystallize in cubic space groups anyway.

Fig. 1. A flowchart representing schematically the principal
steps of the algorithm for assembling protein crystal nuclei. In the
chart, we demonstrate the construction of a two-dimensional layer
group while in the article we construct three-dimensional clusters.
A discussion of the individual steps in the algorithm is found in the
Methods section of the text.
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In the final step, we must decide whether our
aggregate is ordered.A first test for crystalline order
consists of analyzing the distribution of the three
contacts and their inverses. In a true crystal, each
protein exists in the same environment, hence the
three possible contacts must be approximately
equally distributed (the surface of the crystal dis-
rupts the perfectly uniform distribution). Because
both the forward and inverse transformations are
counted together, it must be taken into account that
contacts with pure twofold symmetries occur only
half as often as other types. Aggregates with highly
nonuniform contact distributions are rejected. Our
loose criteria for uniformity consist of accepting all
distributions in which each of the three unique
contacts occurs at least 15% of the time.

If the contacts are sufficiently uniformly distrib-
uted, we evaluate the periodicity of the cluster.
Translation vectors are examined between all pairs
of molecules that have the same orientation (a
rotation angle ,1° between them). From this list, we
extract the three shortest, linearly independent vec-
tors. We then calculate the percentage of vectors
from the complete list that may be expressed as a
linear combination, with integer coefficients, of the
three basis vectors. We accept all coefficients that are
within 5% of the nearest integer value. Finally, we
keep only clusters for which at least 75% of the
vectors may be expressed as integral multiples of the
three basis vectors.

Finally, for the nuclei that are ordered we deter-
mine the space group symmetry. To uniquely deter-
mine a space group, one must know both the underly-
ing lattice of the crystal and the symmetry operation
along each axis. A primitive lattice can be con-
structed fromthe three basis vectors described above.
Linear combinations—with integer coefficients—of
these basis vectors are examined to see if a centered
cell of higher symmetry can be generated.

Having identified the crystal lattice for a cluster,
we next determine the order of any rotational symme-
tries along the crystal axes, distinguishing between
pure rotations and screw rotations. To completely
specify the space group, we also need to consider the
handedness of the rotations, although in this work,
results are reported only for paired enantiomorphic
space groups.

RESULTS AND DISCUSSION

The results of the simulations are reported in
Table I. Approximately 2,000,000 nuclei of 200 mol-
ecules were assembled, of which 2,340 were judged
to be crystalline. Two examples of simulated nuclei
are shown in Figure 2. The entire simulation re-
quired approximately three days on ten Digital
Alpha workstations. The results are shown in Figure
3, where the percentage occurrence of each space
group found in the simulation is compared with the
percentage occurrence found in the PDB, based on

244 dissimilar monomeric proteins from the data
bank.6 From these two distributions, we obtain a
linear correlation,

C 5
Si xi yi

(Si xi
2 Sj yj

2)1/2
(2)

equal to 0.966. Especially striking is the agreement
with the well-known observation that space group
P212121 is by far the most popular symmetry for
protein crystals.

We also performed a x2 test to calculate the
probability that the simulated and PDB frequencies
were drawn from an identical distribution. The x2

value was calculated as follows:11

x2 5 o
i51

2

o
j51

17 (nij 2 nij
e )2

nij
e

(3)

In this formulation, i 5 1 indicates the simulated
distribution and i 5 2 the PDB distribution. Rarely
observed space groups were combined, giving a total
of 17 categories indicated by the index j, each with a
number of occurrences in the data bank greater than
five. The expected number of occurrences is given by
nij
e 5 (n1j 1 n2j) ni

tot/ntot, in which ni
tot is the sum of all

occurrences in i and ntot is the the sum of all
occurrences in i 5 1 and i 5 2.

We found x2 5 34 (with 16 degrees of freedom),
implying that 1% of the time, two datasets drawn
from the same distribution would be at least as
dissimilar as the observed and simulated distribu-
tions reported here. Therefore, it appears that the
simulated and PDB frequencies are drawn from very
similar, but nonidentical, distributions. The simula-
tions capture the vast majority of the information in
the observed space group frequencies, but other
factors not considered here may contribute to the
minor differences. The most notable discrepancy is
that the simulations predict the space group P2 to be
relatively abundant (ninth most seen), although it is
not found in the database generated during our
earlier study.6 This discrepancy may be due to the
limited number of entries in the database; we have
repeated a search on the most recent PDB and found
two instances of space group P2.

These results are only slightly affected by most of
the parameters used in our algorithm. The only
parameter that significantly affects the final distribu-
tion is the acceptance window of the initial rotation
angle between two molecules before it is adjusted to
one of its ideal values.As mentioned above, we reject
configurations of the initial two molecules with
orientations that differ by .10° of one of the permit-
ted angles. Varying the acceptance window has the
effect of changing the ratio of the distribution of
molecules related by a 0° rotation to those related by
60°, 90°, 120°, and 180° rotations. This is because,
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starting from random rotations, it is very improbable
to obtain two molecules whose orientations differ by
only a few degrees. However, this probability in-
creases rapidly as a function of the acceptance
window. The final effect of broadening the window is
to increase the ratio of the space group P1 (for which
all the molecular orientations are the same) to that
of all others. In fact, we chose the value of 10° to give
us a frequency for P1 close to that found in the PDB.
However, this parameter does not significantly affect
the relative frequency of other space groups.

We therefore conclude that our final distribution
represents a general geometric result of the relative
probability of generating nuclei belonging to the 65
biologic space groups (although we cannot conclude
anything about the cubic groups). We find that by
using our crude square well energy model, the
average calculated energies of nuclei do not vary
consistently as a function of space group; no correla-
tion is observed between the space group and the
packing energy. Therefore, one may interpret the
probability of a space group as a product of two
probabilities determined purely by the geometry of
the contacts: the entropic accessibility of a set of

contacts that are consistent with a particular space
group, and the likelihood that when these contacts
are repeated, they lead (without molecular colli-
sions) to a crystalline nucleus. The observation that
space group frequencies are a function of the former
probability is related to our previous analysis of
space group frequencies based on their available
degrees of freedom.6 In other words, certain symme-
tries are more prevalent simply because they impose
fewer constraints on the ways that the molecules can
be arranged in a crystal.

CONCLUSIONS

It is important to emphasize that in the above
analysis we are comparing the distribution of simu-
lated nuclei to that of observed macroscopic crystals
and not observed nuclei. The fact that these two are
very nearly the same implies that the statistically
averaged probability that a critical nucleus grows
into a macroscopic crystal does not depend on its
underlying space group.

If we accept the physical validity of the assump-
tions adopted in the simulations, then we may
conclude that the relative probabilities of occurrence

TABLE I.Simulated vs.Observed SpaceGroupFrequencies
forMonomericProteins

Space group Sim.% PDB% PDB #* Space group Sim.% PDB% PDB #

P212121 31.8 36.1 88 I41 0.3 0.0 0
P21 7.6 11.1 27 P62, P64 0.9 0.0 0
P43212, P41212† 7.9 7.8 19 P213 0.0 0.0 0
P3121, P3221 2.9 7.8 19 I213 0.0 0.0 0
C2 8.7 6.1 15 P4122, P4322 0.0 0.0 0
P6122, P6522 9.5 5.4 13 P432 0.0 0.0 0
C2221 3.0 3.7 9 P4132, P4332 0.0 0.0 0
P21212 5.3 3.7 9 P4232 0.0 0.0 0
P1 4.3 2.9 7 I4132 0.0 0.0 0
P61, P65 2.6 2.0 6 C222 0.0 0.0 0
I4 0.1 2.0 5 P2221 0.0 0.0 0
R3 0.3 2.0 5 P2 3.6 0.0 0
I222 0.3 1.5 4 F432 0.0 0.0 0
P42212 1.3 1.5 4 P3 0.1 0.0 0
P41, P43 1.0 1.0 4 P23 0.0 0.0 0
P31, P32 0.3 1.0 3 P4 0.0 0.0 0
P6 0.0 0.5 1 P312 0.0 0.0 0
P63 0.1 0.5 1 P422 0.1 0.0 0
I422 0.3 0.5 1 P4222 0.1 0.0 0
P3112, P3212 0.1 0.5 1 P222 0.0 0.0 0
R32 1.6 0.5 1 P622 0.0 0.0 0
P42 0.0 0.5 1 F23 0.0 0.0 0
P6222, P6422 0.6 0.0 1 P4212 0.2 0.0 0
I212121 1.0 0.0 0 F4132 0.0 0.0 0
I4122, I4322 0.5 0.0 0 P6322 1.0 0.0 0
P321 0.2 0.0 0 I23 0.0 0.0 0
P4132 0.0 0.0 0 I432 0.0 0.0 0
F222 0.0 0.0 0

*PDB # refers to the number of occurrences in a set of 244 dissimilar monomeric proteins in the
Brookhaven Data Bank.
†For enantiomorphic pairs of space groups, the frequencies refer to the sum of the contributions
from the two symmetries.
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of space group symmetries in protein crystal nuclei
are not influenced by complex physical interactions
or the need to pack proteins in a specific manner.
Instead, the strong preference for certain symme-
tries emerges from simple geometric, or entropic,
considerations. The entropic accessibility of the re-
quired combinations of intermolecular contacts is
vastly different for the various space groups and is

responsible for the observed and simulated distribu-
tions.

This conclusion should not be confused with the
fact that solvent and buffer conditions are critically
important for the growth of a protein crystal in a
laboratory. By varying the solvent mixture contain-
ing the pure protein, it is possible to vary the
strengths and types of intermolecular protein con-
tacts. Only under certain, usually rare, conditions
will these contacts lead to the formation of a protein
crystal. Our conclusions do not suggest that protein-
protein contacts are unimportant for crystal growth,
for they are crucial, but rather that these contacts do
not favor the formation of one space group over
another on average. In other words, in a large
ensemble of crystals the energy of intermolecular
contacts does not vary as a function of space group.

One of the implications of this simulation is that
the nucleation of a crystalline aggregate is primarily
limited by the conformational constraints that are
imposed by the space group symmetry. The discus-
sion was limited to the 65 biologic space groups
(those lacking mirror and inversion symmetries)
because those are the ones accessible to natural
proteins. It is our contention, however, that certain
nonbiologic space groups (P1 in particular) impose
fewer constraints on the molecular conformations
and should therefore be more likely to form crystal-
line nuclei.6 The supporting conclusions drawn from
our simulation, that entropic and not energetic con-

Fig. 2. Space filling images of two of the simulated crystal
nuclei. Each cluster contains 200 molecules. A: Every molecule is
identically colored, with each of the ten particles that compose it in
a different tone. A view down the sixfold axis of the nucleus is
shown. B: All the atoms of a molecule are colored the same way,
and the molecules are displayed in one of ten colors. A view down
the fourfold axis is shown.

Fig. 3. The percentage occurrence of the 65 space groups
obtained from our simulation versus that obtained from the Protein
Data Bank. The list of PDB structures is obtained from ref. 6 and
contains 244 entries. It includes only monomeric proteins without
noncrystallographic symmetry determined to at least 2.5 Å resolu-
tion and excludes multiple observations of closely related proteins
in the same crystal form. The straight line represents the case in
which the frequencies are equal. The correlation coefficient is
0.966.
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siderations determine the likelihood of nucleation,
should motivate further experiments on crystalliz-
ing macromolecules from racemic mixtures.12

Our analysis of the crystalline symmetry of simu-
lated nuclei represents a first computational step
toward a more complete understanding of the nucle-
ation and growth of protein crystals. We intend to
extend the approach to investigate the distribution
of nuclei for symmetric oligomers and racemic mix-
tures of proteins as well as to probe disorder in nuclei
and larger crystalline aggregates.
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