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ABSTRACT The protein sequence database was
analyzed for evidence that some distinct sequence
families might be distantly related in evolution by
changes in frame of translation. Sequences were
compared using special amino acid substitution
matrices for the alternate frames of translation. The
statistical significance of alignment scores were
computed in the true database and shuffled versions
of the database that preserve any potential codon
bias. The comparison of results from these two
databases provides a very sensitive method for de-
tecting remote relationships. We find a weak but
measurable relatedness within the database as a
whole, supporting the notion that some proteins
may have evolved from others through changes in
frame of translation. We also quantify residual ho-
mology in the ordinary sense within a database of
generally unrelated sequences. Proteins 1999;37:
278–283. ! 1999 Wiley-Liss, Inc.
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INTRODUCTION

It is well known that the proteins of modern organisms
have evolved from a smaller number of ancestral protein
sequences. Homologous proteins from different species
have diverged through point mutations, insertions, and
deletions. Paralogs, which are similar proteins in the same
organism, diverged by similar mechanisms after gene
duplication events. Evolutionary connections are estab-
lished among the known proteins by statistical methods of
sequence comparison. Typically, dynamic programming
algorithms are used to produce an optimal alignment by
inserting gaps in the sequences as necessary to bring into
register amino acids of the same or similar type.1 The
similarity between amino acid types is quantified in an
amino acid substitution matrix that accounts for the
probability of point mutations occurring during evolu-
tion.2,3

The Swissprot database of protein sequences has been
analyzed using these and other techniques, and all homolo-
gous protein fragments have been clustered into fami-
lies.4,5 Did the thousands of sequence families found in
these databases arise independently, or are there evolution-
ary relationships between them? One likely possibility is
that many of the apparently unrelated families are related

in the usual sense, but have simply diverged beyond
recognition by the ordinary mechanisms of point muta-
tions and in-frame insertions and deletions. Here we
explore an alternate possibility that some proteins could
be related by different evolutionary mechanisms involving
changes in frame of translation.

Several lines of reasoning support the possibility that
some proteins may have evolved by way of changes in
frame of translation. To begin with, the necessary genetic
mechanisms are common. Nucleotide insertions and dele-
tions occur frequently during evolution. Although typical
analyses of protein sequences reveal only those events that
preserve the frame of translation, one might reasonably
expect most insertions or deletions to occur out of frame.
Other genetic rearrangements could lead to translation
from the opposite strand. It might at first appear that such
changes in frame of translation during evolution will
rarely lead to a new, viable protein that is capable of
spontaneously folding. However, recent experiments with
random protein sequences6 and proteins built from highly
reduced amino acid sets7 suggest that the criteria for
protein folding may be surprisingly permissive.

Furthermore, the degeneracy of the genetic code makes
it possible for a single DNA sequence to support simulta-
neously two overlapping protein sequences in different
frames. This is common in viruses, where the situation
was first discovered.8 There are also special cases in
eukaryotic organisms in which alternate RNA splicings
give rise to proteins that are in different frames over part
of their length (e.g., Grumont et al.9). These scenarios
further support the notion that frameshifting is a feasible
mechanism for protein evolution.

To detect frameshift relationships, we construct five
special amino acid substitution matrices that incorporate
the combined effects of frameshifts and sequence diver-
gence in the ordinary sense (see Fig. 1 and Materials and
Methods). Similar matrices were developed earlier by
Claverie.10 Using these matrices, a set of statistical estima-
tion methods is used to quantify the amount of residual
relatedness within a protein sequence database. The pres-
ent study focuses on well-characterized protein families
and asks whether some may be related by changes in
frame of translation.
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MATERIALS AND METHODS
Alignment Algorithm

To find the optimal local alignment between two se-
quences, we use the Smith–Waterman algorithm.11 This
method requires N ! M steps, where N and M are the
lengths of the two sequences. Although this method finds the
optimal solution to the alignment problem, it is too computa-
tionally intensive for an all-versus-all database search.

To render the search more efficient, we use the BLAST12

approach of aligning only sequences that have a word
match. A word is defined as a four-amino-acid stretch of the
query sequence. Any four-letter segment of the matched
sequence that scores above a threshold against a word in
the query sequence triggers a nongapped alignment at-
tempt. Sequences that yield statistically significant non-

gapped alignments (see below) are then aligned with a
gapped Smith–Waterman alignment. This two-stepped
approach allows for efficient searches of databases, with
an accuracy that is very close to a full Smith–Waterman
search.

Statistical Estimation of Alignment Scores

To detect very distant evolutionary relationships be-
tween protein families, it is essential that accurate esti-
mates be obtained for the statistical significance (or P
value) of alignment scores between sequences. It is known
from preceding work13 that the optimal alignment scores
between pairs of sequences with fixed amino acid composi-
tions are distributed according to the extreme value distri-
bution:

P(Sn,m " t) # 1.0 $ e$%nmpt
(1)

where Sn,m is the optimal alignment score between two
sequences of lengths n and m, and % and p are the two
parameters that describe the distribution.

The simplest approximation one may use when conduct-
ing database searches is to assume that the two param-
eters % and p depend only on the total amino acid composi-
tion of the database. This expeditious approximation is
used in the popular BLAST program,12 with the added
correction that the average length of the optimal local
alignment should be subtracted from the values of n
and m.

However, the actual values of % and p may depend rather
strongly on the amino acid composition of the two se-
quences being aligned. As a result, accurate values of these
parameters are required to obtain reliable probability
estimates. To accurately determine the values of % and p
specific for each pair of sequences, one must calculate the
distribution of alignment scores for several hundred ran-
dom shufflings of the two particular sequences.

We use both methods in progression for assessing statis-
tical significance in our database comparison. The sim-
plest approach, constant % and p, is used to filter out the
lowest scoring pairs. First, the values of % and p are
precomputed once by generating 1,000 pairs of random
sequences, with the average amino acid composition of the
Prodom database. From these comparisons, the distribu-
tion of random alignment scores is computed and the two
parameters of the distribution are extracted. The database
sequences are then compared by pairwise alignment.
Those pairs with a P value less significant than 0.001 are
rejected from further consideration.

The sequence pairs that pass this test of significance are
examined by the most robust and slowest method: one of
the sequences is randomly shuffled 100 times, and an
optimal alignment, using the Smith–Waterman algorithm,
is computed each time. From this distribution of scores,
the % and p parameters are recomputed and the final
statistical significance is assigned.

Fig. 1. (A) A schematic representation of evolutionary steps leading to
proteins related by a frameshift. An initial duplication of a gene, together
with a frameshift error, produces two copies that are translated in different
reading frames. The initial event would likely lead to stop codons in the
new frame, which would have to be removed through point mutations. The
two ancestral proteins then evolve by the usual mechanisms of point
mutations and in-frame insertions and deletions, to produce the two
modern proteins. (B) Notations for the five alternate frames of translation
relative to the standard frame (&1).
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Construction of Frameshift Matrices

We construct matrices that incorporate the evolutionary
mechanism shown in Figure 1. We model the steps of this
figure by a three-stage Markov process: (1) a modern
protein sequence is related to an ancestral protein by point
mutations, insertions/deletions; (2) is subsequently frame-
shifted; and (3) finally evolves once more.

The point mutation, insertion/deletion component of this
process is described by a standard amino acid substitution
matrix. To capture this portion of the Markov process, we
first convert the BLOSUM62 amino acid substitution
matrix3 from a log odds matrix to a conditional probability
(or transition) matrix:

PB(i= j) # p( j)2BLOSUM62ij /2. (2)

P(i= j) is the probability that amino acid i will be
replaced by amino acid j through point mutations accord-
ing to the BLOSUM62 scores. The pj’s are the abundances
of amino acid j and are computed by solving the 20 linear
equations given by the normalization conditions that

!
j

PB(i= j) # 1. (3)

We then compute the nth power (for nonintegral values
of n) of this matrix by calculating the Taylor series
expansion of

PB
n (i= j) # enln(PB). (4)

Raising the probability matrix to a power simulates differ-
ent time lengths of evolution. A power greater than unity
produces a matrix that has a more uniform distribution of
values, and best relates sequences that have diverged fur-
ther. An exponent smaller than one has the opposite effect.

The effect of the frameshift is captured in a separate
matrix. The frameshift conditional probability matrix, Pfs,
accounts for the conversion of a particular codon for amino
acid i into amino acid j in a different reading frame. For
instance, the codon ACG codes for threonine. When the
complementary strand, TGC, is read backwards in the $2
reading frame, GTX (where X is the unknown nucleotide of
the neighboring codon) codes for valine. Therefore, the $2
frameshift conditional probability matrix would reflect
that threonine has a high probability of translating to a
valine. In all cases, we use the convention defined in
Figure 1B, that the default translation of a nucleotide
sequence is the &1 frame, the one and two nucleotide
insertions are &2 and &3, and the translations of the
complementary strand are $1, $2, and $3.

To compute the five frameshift conditional probability
matrices, we tabulate for each reading frame the pairs of
amino acids corresponding to the 64 codons. The values of
the matrix are then given by

Pfs(i= j) #
pfs(i, j)

pfs(i)
, (5)

where pfs(i, j) is the probability of finding the (i, j) amino
acid pair and pfs(i) is the probability of finding the amino
acid i. No attempt is made to model the possible effects of
codon bias at this stage.

To obtain the full frameshift substitution matrix, we
multiply the frameshift conditional probability matrix on
the left and right by the nth power of the BLOSUM62
conditional probability matrix,

Ptot(i= j) # !
k, l

PB
n (i= k) Pfs(k= l)PB

n (l= j). (6)

The product of the three matrices accounts for the fact that
after a frameshift error occurs, both resulting sequences
evolve in the ordinary sense, as embodied in the BLOSUM62
matrix. This matrix is then converted to a log-odds matrix,
when used to evaluate scores of sequence alignments:

Slog-odds(i, j) # log2

Ptot(i= j)

p( j)
. (7)

In the present study, we choose the value of n for each
frame so as to fix the information content in all five
matrices to the value of the BLOSUM62 matrix. Informa-
tion values are computed as

I # $!
i, j

p(i, j)Slog-odds(i, j), (8)

where p(i, j) is the joint probability of amino acid i and j,
and s(i, j) is the corresponding log-odds score from the
matrix.

The necessary values for n are: 0.35 for $1, 0.45 for $2,
0.2 for $3, and 0.3 for the &2 and &3 reading frames. This
implies that the translation of a codon in $2 reading frame
contains the most information. This is so because the
wobble positions of the &1 and $2 reading frames overlap.
Conversely, the $3 reading frame contains the least
information.Apriori, we would expect the frame of compari-
son with the greatest information content to have the
highest probability of finding homologous pairs of se-
quences related by frameshift.

The gap penalties associated with each frameshift ma-
trix were chosen to optimize the alignment results in a
synthetic database. We generated 100 pairs of sequences.
One sequence in the pair resulted from the translation of a
random 1,000-nucleotide sequence. The nucleotide se-
quence was then randomly mutated and gaps were in-
serted (one gap per 100 mutations) and then translated in
a different reading frame to generate the second amino
acid sequence of the pair. We then aligned each sequence
against each other sequence in the pair database using the
appropriate frameshift substitution matrix. The gap penal-
ties were chosen to maximize the differences between P
values for true and false positives. The frameshift substitu-
ton matrices are available on the Internet at http://
www.doe-mbi.ucla.edu/people/yeates/frameshift.
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RESULTS AND DISCUSSION

Among the possible databases one may choose to ana-
lyze, we opted for the Prodom database,4 version 34.2,
because it contains consensus sequences for each protein
domain family. From this database, we extracted 8,823
consensus sequences with an average length of 90 and a
maximum length of 399. Only families that contained at
least four representative domains were retained. This
criterion was imposed in an effort to eliminate misse-
quenced domains from our list. It is known that sequenc-
ing errors are quite common,10 and their presence among
our list would lead to spurious frameshift relationships. By
selecting only families with four or more representatives,
we effectively eliminate this possibility, because it is
unlikely that all the proteins in the family have been
sequenced incorrectly.

For each alternate reading frame, the database se-
quences are compared pairwise with the two-step proce-
dure described in Materials and Methods. Each sequence
alignment yields a single probability score, so an all-
against-all database comparison produces a distribution of
roughly 100 million P values. We ask whether the observed
distribution of P values differs significantly from the
distribution expected by random chance.

To answer this key question, we repeat the same calcula-
tion with a shuffled version of our sequence database.
Because hexanucleotide biases are known to exist within
coding regions, we shuffle the database sequences in
blocks of three amino acids to preserve any such bias. We
also shuffle sequences in single amino acid blocks. The
distribution of P values from all-versus-all alignments in
the shuffled database may be treated as a background
signal, allowing us to verify whether the true database
yields a distribution that is above the noise level. Because
of the large number of comparisons, the method of analysis
is very sensitive to faint sequence relationships on a
database-wide scale.

In a search with the plus-two frameshift matrix, the
distribution of P values as a whole is slightly higher for the
real versus the shuffled database. When the results are
examined in Figure 2, we find an excess of approximately
50 scores with P values less than 10$4. This result suggests
that a subset of the modern protein domain families may
be distantly related to each other by frameshifts. However,
the detectable residual homology between sequence fami-
lies is at a level that does not permit us to conclude that
specific families are unambiguously related, except in a
few special cases. In essence, we can accurately measure
the degree of residual homology within the database as a
whole, although the confidence in each particular relation-
ship may be relatively low.

When we examined the P value distribution in detail, we
also found 13 hits with P values well beyond background,
as seen in the inset of Figure 2. We analyzed these results
in detail and found that all of these clearly matching pairs
were viral proteins. When we examined the genomes from
which these proteins were translated, we found that they
correspond to overlapping viral genes.

We repeated the calculation of the P value distribution
with the $1, $2, and &3 frameshift matrices. The results
of these calculations are summarized in Table I. We find
that as in the previous case, the signal from the real
database is slightly higher than that from the shuffled
database. We show that the total number of sequences
with a P value less than 10$3 is higher for the real versus
the shuffled databases.

The method we have presented may also be used to
quantify the degree of residual homology in the ordinary
sense within a database. To demonstrate this, we con-
ducted alignments between all the sequences in our fil-
tered Prodom list using the BLOSUM62 matrix. It was
recognized by the authors of the Prodom database that
residual homology exists between the domain families as a

Fig. 2. Distribution of alignment scores in searches for translation
from frameshifted reading frames on the coding strand. A plot of the
number of sequence pairs versus their P value computed using the
&2/&3 frameshift matrix. The solid line is for pairwise comparison of
the Prodom database. The dashed line is for pairwise comparisons of the
shuffled version of the database. A complete view of the distribution is
displayed on a log–log plot in the inset. The shaded region represents the
number of protein sequences believed to be related by frameshifts.

TABLE I. Number of Frameshifted Sequence
Comparisons With PF 10!3

Reading
frame Unshuffled Shuffleda

Excess
hits

&1 34,689 23,726 10,963
$1 49,128 47,107 (46,862) ' 45b 2,021
$2 37,795 36,600 (36,673) 1,122
&2 48,487 46,725 (46,299) 1,762
&3 37,637 36,059 (36,362) 1,275

aValues in parentheses are for sequences shuffled in blocks of three
amino acids.
bThe variance was computed from the results of three separate
shufflings of the database. The uncertainty may also be estimated
from Poisson counting statistics to be approximately 200. Similar
estimates should apply to the other frames of translation.
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consequence of applying too stringent a P value cutoff
when using the BLAST program.4 This was necessary to
avoid generating spurious alignments. By implementing
our method we were able to quantify this statement. The
results are shown in Figure 3, which depicts the histogram
of P values for the true and shuffled databases. A compari-
son of these distributions demonstrates that, as expected,
the signal from the true database is significantly stronger
than that from the shuffled database. By subtracting the
number of low probability alignments expected for random
sequences from the number found for the true sequences,
we find that approximately 2,000 sequence pairs yield P
values above background. Although some of these se-
quence pairs contain the same single sequence, a liberal
estimate is that 20% of the sequences in this particular
database have relatives within the database.

CONCLUSIONS

We have conducted a careful statistical analysis of
pairwise sequence comparisons of domains extracted from
the Prodom database using five amino acid substitution
matrices designed to capture the effects of frameshifts
during evolution. Because the sought-after relationships
are remote, obvious relationships between specific protein
families are generally not seen or anticipated. Instead, we
have compared the complete distribution of pairwise prob-
ability scores to corresponding distributions obtained with
a database of shuffled sequences. The comparison of these

distributions reveals faint relationships between se-
quences on a database-wide scale.

We find that although the P value distributions are
generally similar for the real and shuffled databases, there
appears to be a real abundance of low probability scores,
particularly in the same-strand frameshift comparisons.
The results suggest a probable frameshifted evolutionary
relationship between several hundred domain families.
Unfortunately, because of the weakness of the signal, it is
generally not possible to say with certainty which families
might actually be related. A few sequence pairs do produce
very significant frameshift scores far above background,
but these can all be traced to viral genomes, where the
genes coding for the proteins are physically overlapping,
primarily on the same strand.

The results presented here are statistical in nature, and
there may be other possible explanations for the data.
DNA sequencing errors are a cause for concern, but we
have circumvented that problem by examining only well-
characterized sequence families. The appearance of frame-
shift similarity might also arise from some peculiarity of
the genetic code, and we have attempted to account for this
by shuffling the database sequences in blocks, preserving
potential hexanucleotide biases. We believe that the sim-
plest explanation is that the signal we observe, even
though weak, is caused by true frameshift homology
between domain families.

We have also quantified residual homology, in the ordi-
nary sense, between Prodom domain families using the
BLOSUM62 matrix. We estimate that approximately 20%
of the domain families in this particular database have
common ancestors. The statistical approach taken here is
generally useful for determining whether further similari-
ties exist in a database and in improving estimates of the
number of unique protein families.

The present study focused on the relatively common
protein sequence families, which must be relatively old,
predating the speciation of the organisms in which they
appear. An investigation of newly emerged or ORFan14

sequences (having no homologues in other species) might
provide more evidence for frameshifts during evolution.

ACKNOWLEDGMENTS

We thank Drs. Danny Rice, Robert Grothe, and David
Eisenberg for many useful discussions. Part of this work
was supported by a Sloan foundation and the Department
of Energy postdoctoral fellowship (M.P.).

REFERENCES
1. Needleman SB, Wunsch CD. A general method applicable to the

search for similarities in the amino acid sequences of two proteins.
J Mol Biol 1970;48:443–453.

2. Dayhoff MO, Barker WC, Hunt LT. Establishing homologies in
protein sequences. Methods Enzymol 1983;91:524–545.

3. Henikoff S, Henikoff JG. Amino acid substitution matrices from
protein blocks. Proc Natl Acad Sci USA 1992;89:10915–10919.

4. Sonnhammer ELL, Kahn D. Modular arrangement of proteins as
inferred from analysis of homology. Protein Sci 1994;3:482–492.

5. Sonnhammer ELL, Eddy SR, Durbin R. Pfam: a comprehensive
database of protein domain families based on seed alignments.
Proteins 1997;28:405–420.

Fig. 3. Residual homology within the Prodom database of distinct
sequence families. A log–log plot of the number of sequence pairs versus
their P value computed using the BLOSUM62matrix. The thick line is for a
pairwise comparison of the Prodom database. The thin line is for a
shuffled version of the database, which is linear as expected and gives the
distribution of scores expected for a set of unrelated sequences. The
shaded region represents the number of protein families believed to be
related to each other by distant homology.

282 M. PELLEGRINI AND T.O. YEATES



6. Davidson AR, Lumb KJ, Sauer RT. Cooperatively folded proteins
in random sequence libraries. Nature Struct Biol 1995;2:856–863.

7. Kamtekar S, Schiffer JM, Xiong H, Babik JM, Hecht MH. Protein
design by binary patterning of polar and nonpolar amino acids.
Science 1993;262:1680–1685.

8. Barrell BG, Air JM, Hutchinson CA. Overlapping genes in bacte-
riophage (X174. Nature 1976;264:34–36.

9. Grumont RJ, Fecondo J, Gerondakis S. Alternate RNA splicing of
murine nfkb1 generates a nuclear isoform of the p50 precursor
NF-kappa B1 that can function as a transactivator of NF-kappa
B-regulated transcription. Mol Cell Biol 1994;14:8460–8470.

10. Claverie J. Detecting frame shifts by amino acid sequence compari-
son. J Mol Biol 1993;234:1140–1157.

11. Smith TF, Waterman MS. Identification of common molecular
subsequences. J Mol Biol 1981;147:195–197.

12. Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and
PSI-BLAST: a new generation of protein database search pro-
grams. Nucleic Acids Res 1997;25:3389–3402.

13. Waterman MS, Vingron M. Sequence comparison significance and
Poisson approximation. Stat Sci 1994;9:367–381.

14. Fischer D, Eisenberg D. Finding families for genomic ORFans.
Bioinformatics 1999;15: in press.

283FRAMESHIFT RELATIONSHIPS IN PROTEIN SEQUENCES


