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Over the past few years several technologies have been developed to determine 
interacting partners of proteins.  The techniques fall into two broad categories: direct and 
indirect.  Experimental techniques have been developed to directly probe protein 
interactions by monitoring protein binding events.  These techniques include the two-
hybrid approach, protein fragment complementation assays, co-purification techniques 
and protein chips.  In addition to these methodologies, several approaches have also 
emerged over the past few years to deduce indirect couplings between proteins.  These 
couplings do not necessarily imply that two proteins are bound within the cell however 
they do provide evidence that perturbing one protein is likely to significantly perturb the 
function of its partner.  These couplings may be deduced by studying the evolution of 
protein pairs, estimating the degree of correlated transcription of two genes or by 
searching for synthetic lethal pairs.  In all cases, protein interactions and protein 
couplings are being used to advance drug discovery by providing detailed information on 
protein functions and by suggesting novel targets that act within biochemical pathways 
implicated in disease.  
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1 Introduction 

1.1 Using Protein Interactions to Guide Target Selection 
 
Understanding the interactions between molecules within cells should dramatically 
improve our ability to design new drugs.   This assumption is based on the belief that 
most molecules within in a cell participate in multiple interactions that form vast cellular 
interaction networks.  The perturbation of any one molecule will inevitably perturb a 
subset of the global network.  Therefore, to model the effect of drugs on cells it is 
important to be able to reconstruct networks of molecular interactions. 

Knowledge of these networks should permit scientists to both discover new 
targets for therapeutic drugs as well as better understand the inherent toxic liabilities of 
these targets.  Novel targets may be selected on the basis of their connectivity to 
pathways that have already been associated with diseases.  For instance, if we know that 
several proteins are directly involved in the activation of T cells and we discover that a 
new protein is interacting with some of these proteins it is likely that the modulation of 
the new protein will have a direct impact on T cell activation.  Many targets are currently 
being selected based on their network of interactions, and it is likely that in the future, as 
our understanding of these networks improves, this target selection strategy will become 



commonplace.  However, due to the long time involved in the development of drugs to 
targets, we have not yet seen drugs fully developed to targets selected using this approach. 

Modeling the toxic consequences of drugs is an extremely challenging goal.  
Toxicity may arise due to a myriad of factors that include non specificity of the drug to 
inherently toxic protein targets.  Interaction networks may prove valuable in our attempts 
to model the latter phenomenon.  If we understand the local network of interactions a 
protein is involved in, it is likely that we will be able to better judge whether the 
modulation of the activity of the protein is likely to interfere with other critical pathways 
that would lead to toxic side effects. 

One final example suggests how protein interactions are being considered for 
target selection.  It is known that cancer cells typically contain multiple mutations with 
respect to the wild type cells from which they originate.  These mutations allow the 
cancer cells to grow abnormally which ultimately leads to disease.  Since each of these 
mutations may lead to the alteration of the activity of the associated protein, it is thought 
that if we understood the interactions of this protein we could select among these a 
therapeutic target whose modulation leads to cell death only in cells where the mutation 
is present.  These targets could lead to non-toxic chemotherapies that are cytotoxic in 
mutated cells while leaving the wild type cells unaffected [1].   

1.2 Methods for Measuring Protein Interactions 
 
Several experimental techniques have been developed to directly probe protein 
interactions within a cell.   The two-hybrid technique is based on the construction a bait 
and a prey protein that are fused to two halves of a transcription factor.  If the bait and the 
prey protein interact the transcription factor is reconstituted and its activity is measured 
though the activation of the transcription of a reporter gene.   This approach is a specific 
example of a general class of protein fragment complementation assays.  Protein 
interactions may also be directly monitored using various co-purification techniques.  A 
protein may be directly purified using a specific antibody or the protein may be tagged 
with another protein or a small molecule tag and then affinity purified.  In all cases, if the 
selected protein interacts with other proteins these will be co-purified.  The identity of the 
interacting partners may be deduced using mass spectrometry among other techniques.  
Protein microarrays are also emerging as a promising tool to directly observe protein 
interactions in a parallel fashion.  

Several techniques have also been developed to reconstruct indirect protein 
couplings within the cell.  These techniques do not necessarily predict which proteins 
physically interact but which ones are likely to be coupled within the cell.  Couplings 
imply that if we modulate the activity of one gene it is likely to affect the activity of the 
coupled gene via interactions with other molecules.   It is also assumed that perturbations 
of coupled genes are likely to lead to the same cellular phenotype. 

 Protein couplings may be deduced from the evolutionary history of pairs of 
proteins.  If we find that two genes evolve in a correlated fashion it is likely that they are 
coupled within a cellular network.  This correlation may be deduced by reconstructing the 
phylogenetic tree of two families of interacting proteins such as a family of ligands and 
receptors.  Correlated evolution may also be deduced by finding pairs of genes that are 
always inherited together from the ancestral species.  In the case of bacteria, they may 



also be inherited as part of a block of genes, and therefore one may find the pair of genes 
coded near each other in multiple organisms.  In a few cases, two genes in an ancestral 
species may be mutated to form a single gene in the daughter species. 

Another form of molecular coupling may be inferred from the measurement of 
gene expression levels.  Genes that are transcribed in a correlated fashion are inherently 
coupled within the cell.  The activity of one is likely to be correlated with the activity of 
its partner since their mRNA concentrations are coupled.  It is now possible to deduce 
these couplings in an efficient manner from the analysis of DNA microarray data.  

A final technique for discovering proteins that are coupled within a cell is through 
the search for synthetic lethal mutations.  In the case of yeast, for instance, it is known 
that most gene knock-outs lead to viable yeast strains.  However, it is possible in many 
cases to find secondary knock-outs that are lethal in these strains.  The pair of knock-outs 
that are lethal in combination but viable alone are termed synthetically lethal.  Gene pairs 
that are synthetically lethal are clearly coupled within the cell even though are not 
necessarily physically interacting.  

A synthesis of interaction data from all these methods may be performed to 
generate cell-wide interaction networks.  These networks represent our current best 
guesses of the network properties of cellular couplings.  The complexity of these 
networks is akin to that of many other networks found in nature and human societies.  It 
is inevitable that our understanding of biology and medicine will undergo profound 
changes as our understanding of these networks improves. 

2 Methods for Detecting Direct Protein Interactions 

2.1 Two-Hybrid Method 
 
GAL4 is a transcription factor that in the presence of galactose activates transcription of 
the GAL structural genes, which encode galactose metabolic proteins.  The protein 
contains two domains, an activation domain and a DNA binding domain.  In 1989 Fields 
and Song suggested that GAL4 hybrids could be used to report protein interactions [2].  
The strategy consists of forming a fusion between protein A with the Gal4 activation 
domain and protein B with the GAL4 DNA binding domain.  If protein A and B interact, 
the GAL4 activation domain and the GAL4 DNA binding domain are brought in 
proximity of each other and the reconstituted protein activates the transcription of a 
reporter gene which has been engineered to contain the GAL4 promoter.  Thus, the 
presence of the reporter gene in yeast implies that protein A binds protein B. 
 Over the past few years this strategy has been scaled up so that it is now possible 
to efficiently measure thousands of binding events [3-6].  Typically the observation of a 
single binding event is not a reliable indication that two proteins are actually interacting 
[14]. This is due to the fact that both proteins are over-expressed in this assay and 
therefore the observed interaction may not be present in the wild type yeast where the 
concentrations may be significantly lower.  Therefore a common strategy is to report only 
interactions that are observed more than once in duplicate screens. 
 Some additional limitations of the two-hybrid approach include the difficulty of 
elaborating interactions involving membrane proteins.  To study membrane proteins one 



must construct GAL4 fusions with only the extracellular or cytoplasmic domains of 
membrane proteins, adding an additional level of complexity to the assay.   
 The second limitation comes from the fact that to date most of the comprehensive 
two-hybrid screens have been conducted for yeast or bacterial proteins, but not yet for 
human proteins.  For drug discovery applications, a map of human interactions is more 
valuable than that in yeast or bacteria, since these serve a limited role as model organisms.  
The technical difficulties of extending the two-hybrid approach to human proteins have 
been partially solved, and a comprehensive map of two-hybrid interactions between 
human proteins should become available in the near future. 

2.2 Protein Fragment Complementation Assays 
 
The two-hybrid approach represents a specific instance of a general approach developed 
to study direct protein-protein interactions termed protein fragment complementation 
assays (PCA) [8-10].  As in the two-hybrid approach, in PCAs half of a reporter protein is 
fused to protein A and the other half to protein B.  If protein A and B interact, the two 
halves of the reporter protein reconstitute to restore its activity.   The assay then reads out 
the activity of the reporter protein. 
 In one particular implementation of PCA, the reporter protein is dihydrofolate 
reductase (DHFR) [10].  DHFR is an essential enzyme that converts dihydrofolate into 
tetrahydrofolate, a methyl group shuttle required for the de novo synthesis of purines, 
thymidylic acid, and certain amino acids.  Cells that do not have DHFR activity cannot 
survive in media depleted of nucleotides.   

The strategy underlying this PCA assay consists of fusing half of DHFR to 
protein A and the other half to protein B, in cell lines where the activity of DHFR is 
knocked out.  If protein A and B interact, the activity of DHFR is restored and the cells 
survive in nucleotide depleted media, conversely if protein A and B do not interact the 
cells die.  It is critical to the success of this assay that the two halves of DHFR fused to 
the proteins A and B cannot fold unless the two query proteins interact. 

This assay has been applied in Chinese hamster ovary cells lacking DHFR and 
multiple protein interactions have been probed.  However it is possible to extend this 
assay one step further to probe the extent of interactions between two proteins [8].  To 
accomplish this one introduces one last step which consists of adding fluorescent 
methotrexate to the cells.  Methotrexate is a known inhibitor of DHFR that binds with 
high affinity.  The degree of interaction between two proteins with DHFR fractions fused 
may be monitored by fluorescence imaging of the methotrexate.   This allows one to 
monitor the extent to which the interaction is perturbed as the cell is perturbed and hence 
map out the crosstalk between molecular pathways. 
 

2.3 Co-purification techniques 
 
One standard approach that may be utilized to map protein interactions is to tag a protein 
in the cell and then pull down the tagged protein together with other proteins bound to it.  
The identity of the interacting partners may then be revealed using various techniques 
among which are mass spectrometry.  Two versions of this approach have recently been 



implemented by groups that set out to map a large set of protein interactions in 
Saccharomyces cerevisiae [11,12].  
 In the first version the tandem affinity purification (TAP) tag was used [32].  This 
tag consists of two components: the first is used as a first purification tag which is then 
cleaved and the second tag is used for a subsequent purification step.  The tag is built into 
the 3’ end of the chosen gene using homologous recombination.  This ensures that the 
tagged protein is expressed at native levels within the cell.    Once the tagged protein has 
been affinity purified, the product is separated using one-dimensional SDS-PAGE.  The 
identity of the proteins in the various bands are then determined using MALDI-TOF mass 
spectrometry.   
 In the second implementation genes are tagged with the Flag epitope [12].  In 
contrast to the previous approach, the genes are transiently overexpressed from the 
heterologous GAL1 or tet promeoters.  The next steps are similar to the ones described 
above:  the proteins are affinity purified, passed through an SDS-poluachrilamide gel, and 
then idenitifed using MS/MS fragmentation. 

The accuracy of a procedure is difficult to determine, but may be approximated by 
checking the measured interactions against known ones.  The coverage and accuracy of 
each approach may then be approximated.  Although both approaches yielded 
comparable numbers of protein pairs, various studies suggest that purification of the TAP 
tag and native expression levels lead to fewer false positives using the first approach with 
respect to the second [13].  

2.4 Protein Chips 
 
Yet another approach to study protein interactions that has recently been developed 
consists of constructing protein chips.  Protein chips are the protein counterpart of DNA 
chips which are widely used to measure gene expression levels.  In a protein chip each 
spot consists of a different purified protein.  By studying the binding of fluorescent 
molecules to these chips it is possible to reconstruct protein interaction patterns. 
 Protein chips are significantly more difficult to manufacture than DNA chips 
because of the intrinsic properties of proteins that allow them to bind nonspecifically to 
many surfaces.  However, many of the technical difficulties have recently been 
surmounted and a nearly complete yeast protein chip has been assembled [15].  To attach 
proteins to the chip slide, each gene was fused to glutathione S-transferase polyhistidine 
(GST-HisX6).   Each of 5800 different genes was then spotted onto a microarray using a 
standard microarrayer.   
 The advantage of protein chips over the previously mentioned methods for 
studying protein interactions is that they permit the observation of the binding of any 
molecule to a spot and not just another protein.  It is therefore possible, for instance, to 
measure the binding of phosphoinositide (PI).  The authors identified over 150 PI binding 
proteins that could be grouped into strong and weak binders according to the intensity of 
the fluorescent signal. 

Difficulties associated with the manufacture of protein chips include purification 
of the proteins without their binding partners, misfolding of proteins on the glass slide 
and general difficulties in expressing large quantities of all yeast ORFS. Although protein 
chip technologies show great promise, it may yet take several years for their use to 



become widespread as the technical difficulties surrounding their manufacturing and use 
are overcome.  

3 Computational Methods for Detecting Interacting 
Partners 

 

3.1 Evolutionary Evidence for Protein Couplings 

During the course of evolution protein sequences may undergo multiple transformations 
such as point mutations, insertions, deletions and duplications.  The ability to construct 
multiple alignments of proteins families allows one to partially reconstruct these 
transformations.  The study of these evolutionary transformations of single protein 
families has become commonplace, and may be visualized with multiple sequence 
alignments or phylogenetic trees (e.g. [33]). 

More recently however, as sequence databases have grown, it has become 
possible to study the correlation between the evolutionary relationships between two 
distinct protein families.  One might imagine that if two proteins interact, the evolution of 
one might be correlated with the other.  For instance, mutations that occur on a ligand 
might be compensated by mutations to its receptor in order to maintain the ligand-
receptor binding affinity.  This phenomenon has in fact been demonstrated in the case of 
chemokines and their associated receptors [16].  Therefore, by constructing phylogenetic 
trees of ligands and ligand receptors it is possible to partially reconstruct which ligand is 
likely to bid which receptor. 

During the course of evolution proteins are not only mutated but occasionally 
deleted or horizontally transferred from one organism to another.  Deletion or horizontal 
transfer events are particularly common in bacteria since the genomes are under selective 
pressure to remain compact.   These phenomena may also be exploited to study protein 
couplings by reconstructing the correlated presence or absence of proteins within 
genomes.  It has been observed that pairs of proteins that are lost or gained together 
during evolution tend to be functionally coupled [21]. 

One technique that has been used to study the correlated presence or absence of 
protein pairs across organisms involves the construction of phylogenetic profiles [17,18].  
Phylogenetic profiles are simply a binary representation of the presence or absence of 
genes across species (see figure 1).  The profile consists of a binary vector of N 
dimensions, where N is the number of fully sequenced genomes, whose entries are 1 if a 
protein family representative is present and zero otherwise.  By identifying pairs of 
protein families that share similar phylogenetic profiles it is possible to identify which 
proteins are likely functionally coupled. 
 Finally, during the course of evolution genomes may undergo shuffling events 
that do not perturb individual gene sequences but perturb their order on the genome.  In 
the case of eukaryotes where each gene possesses its own promoters these events are not 
likely to be very disruptive.  However in bacteria where multiple genes belong to operons 
that are regulated by a single promoter, shuffling a genome may significantly affect the 
expression of genes.  Therefore bacteria are under selective pressure to retain only 



shuffling events that in large part maintain their operon structure.  This assumption 
allows one to search for pairs of genes that have retained their chromosomal proximity in 
many species [19,20].  As in the case of proteins with matching phylogenetic profiles, 
these gene pairs are also likely to contain functionally associated genes.   To date, 
however, this technique has only been applied to reconstructing couplings between 
bacterial genes.  Recently this technique has been combined with that of phylogenetic 
profiles to study the evolutionary conservation of neighboring gene pairs [34] 
 

3.2 Gene Fusions 
 
As we discussed in the previous section, genes undergo multiple transformations during 
the course of evolution.   One additional type of transformation involves the fusing of two 
genes into one.  Although one may imagine that in most cases these mutations would be 
selected against as they might yield large and unstable proteins, in some cases they may 
be preserved because they enhance the function of the fusion protein by bringing into 
proximity two proteins with associated functions.  One such example occurs in 
metabolism where a first protein generates a metabolic product that is acted upon by a 
second protein.  If these two catalytic events are performed by two separate molecules the 
overall kinetics may be slower than if they are performed by a single molecule that 
combines them. 
 Using conventional sequence alignment techniques it is possible to systematically 
identify all fusion events that may have occurred between the genes of one organism 
[22,23,24].  This entails identifying a third protein that aligns, in a statistically significant 
fashion, to both the starting genes.  However, this approach may also yield a significant 
number of spurious fusion events due to the fact that protein sequences are inherently 
modular and many modules are used hundreds of time throughout a genome.  For 
example, finding two kinases that both align with a protein with two kinase domains is 
unlikely to represent a true fusion event since hundreds of kinases within the human 
genome contain multiple kinase domains. 

3.3 Co-transcription 
 
Human cells contain hundreds of transcription factors that bind to specific promoters 
within genes.  Each gene typically contains multiple promoters and its transcription rates 
are therefore influenced by multiple factors.  This scenario leads to a complex 
transcription network in which the mRNA levels of one gene are coupled to those of 
many others with either positive or negative correlations [35]. 
 Since the development of DNA microarrays it has become possible to 
simultaneously measure most of the mRNA concentrations within cellular populations.  
As the cell is subject to perturbations the expression levels of many genes are altered.  By 
monitoring the concentrations of most mRNAs as a cellular population is subject to these 
perturbations it is in principle possible to reconstruct many of the couplings between 
genes [25].  Coupled genes are likely to contain common promoters that are activated by 
some of the perturbations. 



 The Pearson correlation coefficient is usually computed to estimate the coupling 
between genes: 
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It is straightforward to compute all N2 correlations between the N genes spotted on a 
DNA microarray.   These are typically distributed according to a normal distribution 
bound between 1 and -1.  The extreme tails of this distribution contain the highly 
positively and negatively correlated genes within the particular dataset that has been 
examined (see figure 2).  These pairs are most likely involved in a common pathway or 
protein complex.  For example, one typically finds that most of the protein components of 
the ribosome fluctuate in correlated fashion across experiments.  A popular technique 
used to visualize the relationships between co-expressed genes involves the construction 
of hierarchical clusters [26]. 
 DNA microarrays have become a powerful tool for pathway reconstructions 
because they permit the direct measurement of transcriptional couplings between genes.  
However, many interacting proteins are not co-transcribed even though it has been shown 
that interacting proteins tend to be more co-expressed than non-interacting proteins [14].  
It is important therefore to use multiple techniques to gain a full understanding of protein 
couplings within cells.  

3.4 Synthetic Lethal Mutations 
 
One final technique that we review for establishing the interacting partners of proteins is 
the search fore synthetic lethal mutations.  Following a systematic deletion of all yeast 
genes it was discovered that about 80% of genes are viable.  In other words, yeast cells 
are able to grow and function when these genes are knocked-out one at a time [27].  
However, in some cases when two individually viable genes are knocked out the cell dies.  
Genes that are viable individually, but essential when both are mutated are termed 
synthetically lethal. 
 The relationship between a pair of synthetically lethal genes is different than that 
identified by techniques that measure protein-protein physical interactions.  Two genes 
that are synthetically lethal need not bind to each other, but must possess activities that 
are complementary so that the deletion of one may be buffered by the other.  It has been 
observed that synthetically lethal pairs of proteins tend to participate within the same 
pathway [28].  Therefore these pairs represent interacting partners whose activities are 
coupled. 
 Recently, advances in robotics have permitted the systematic search for synthetic 
lethal pairs in Saccharomyces cerevisiae [28].   By crossing strains of yeast with single 
mutations it is possible to generate all possible double mutants.  By screening these 
double mutants for viability, it is possible to identify all synthetic lethal pairs. 
 Initial results of such a screen have shown that on average each gene has about 20 
synthetic lethal partners.  This suggests that a complete network of synthetic lethal pairs 
would be highly interconnected, once again demonstrating that our current notions of 



modular pathways may need to be rethought once interaction data is collected on a 
genome-wide scale.  

4 Synthesizing Couplings Deduced form Multiple 
Methods into a Single Network 

 
The data reported from experiments that probe direct protein-protein interactions has 
been catalogued within the Database of Interacting Proteins (DIP) [7].  Currently there 
are about 15,000 interactions between Saccharomyces cerevisiae proteins reported there, 
the organism within which comprehensive screens have been conducted most extensively 
(see Table I).  When viewed as a network these relationships represent a comprehensive 
view of protein interactions within yeast, encompassing about two thirds of the yeast 
proteome.  Although it is not known how many direct physical interactions between yeast 
proteins will ultimately be measured, it is assumed that each protein engages in only three 
or four interactions and that the current catalogue will not grow significantly in the future. 
 Databases have also been constructed to combine the evolutionary based methods 
for deducing protein couplings [29,30].  To date these have been mostly applied to 
bacteria where the existence of operons renders the methods more successful. 
 Finally, in the case of Saccharomyces cerevisiae, it has been shown that it is 
possible to combine protein couplings inferred from evolutionary methods and co-
expression data to arrive at a comprehensive network of couplings between yeast genes 
[31].  Similar approaches are currently being applied to the reconstruction of human 
networks and being applied directly to the discovery of new drugs. 

 

5 Summary 
 
Protein targets consist of genes whose modulation has a therapeutic impact on disease.  
The difficulty of identifying these proteins is due to the difficulty of testing the 
modulation of proteins in humans where the drugs ultimately act.  Typically these tests 
involve complicated clinical trials that involve the monitoring of hundreds or thousands 
of people over months or years at a cost of hundreds of millions of dollars.  To enhance 
the success of these trials it is critical that one has a good disease model to select the 
therapeutic modality.  These models typically consist of animals that manifest the disease 
or cell lines that reproduce certain aspects of the disease. 

In the future, as robotics advances, it may be possible to subject these disease 
models to thousands of perturbations and systematically select out the ones that impact 
the disease state.  For instance, it may be possible to subject a particular cell model to all 
possible gene deletions and monitor which ones impact the disease phenotype.  However, 
currently it is not usually feasible to conduct such genomic screens and it is therefore 
imperative to design sub-genomic perturbation experiments.  It is in the design of these 
experiments that protein interaction maps are proving valuable.   Using protein 
interaction networks it is possible to expand a small sets of genes that are likely to affect 
the modeled disease states into a much larger set that are linked to these.  Experiments 



that set out to demonstrate that these expanded lists of genes are involved in the disease 
state should be highly enriched for positive results compared to genome-wide assays. 

In the future, as static interaction networks are replaced by more sophisticated 
quantitative models it may become possible to accurately predict the outcome of many 
experiments in sislico.   The realization of this goal should have a dramatic impact on the 
way drug targets are discovered.  The next few decades will undoubtedly see a great deal 
of research devoted to this long term goal.  
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Table I – Statistics from the Database of Interacting Proteins a compendium of 
experimental measurements of direct protein-protein interactions 
 

ORGANISM PROTEINS INTERACTIONS #Exp #Int 
1 13145 
2 1151 
3 350 
4 146 

Saccharomyces cerevisiae 
(budding yeast) 4711 14941 

5+ 149 
Helicobacter pylori 710 1415   

1 557 
2 103 
3 29 
4 17 

Homo sapiens 
(Human) 687 717 

5+ 11 
1 192 
2 49 
3 24 
4 11 

Escherichia coli 269 286 

5+ 10 
1 81 
2 13 

Mus musculus 
(house mouse) 177 97 

3 3 
 



Figure 1 
 
A hieraerchical cluster of Eschericia coli phylogenetic profiles.  The cluster contains 
mostly genes known to be part of the flagella machinery.  Red indicates that a homolog 
of the genes is present in the organism shown on the top, and black that it is absent.  The 
cluster was constructed using the program Cluster and TreeView by Michael Eisen. 
 
Figure 2 
 
Co-transcribed genes deduced from a dataset of leukocyte cancers.  We represent genes 
that are co-expressed above a cutoff value as linked.  The red genes are known 
components of the T cell receptor: the epsilon and delta subunits of the CD3 T-cell 
receptor complex and ZAP70, a zeta chain associated kinase.  The blue genes are 
additional genes co-expressed with these three.  These linkage representations are useful 
for selecting novel genes that may modulate the activity of the T-cell receptor.  





 


