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Shotgun bisulphite sequencing of the Arabidopsis
genome reveals DNA methylation patterning
Shawn J. Cokus1*, Suhua Feng1,2*, Xiaoyu Zhang1{, Zugen Chen3, Barry Merriman3, Christian D. Haudenschild4,
Sriharsa Pradhan5, Stanley F. Nelson3, Matteo Pellegrini1 & Steven E. Jacobsen1,2

Cytosine DNA methylation is important in regulating gene
expression and in silencing transposons and other repetitive
sequences1,2. Recent genomic studies in Arabidopsis thaliana have
revealed thatmany endogenous genes aremethylated either within
their promoters or within their transcribed regions, and that gene
methylation is highly correlated with transcription levels3–5.
However, plants have different types of methylation controlled
by different genetic pathways, and detailed information on the
methylation status of each cytosine in any given genome is lacking.
To this end, we generated a map at single-base-pair resolution of
methylated cytosines for Arabidopsis, by combining bisulphite
treatment of genomic DNA with ultra-high-throughput sequen-
cing using the Illumina 1G Genome Analyser and Solexa sequen-
cing technology6. This approach, termed BS-Seq, unlike previous
microarray-based methods, allows one to sensitively measure
cytosine methylation on a genome-wide scale within specific
sequence contexts. Here we describe methylation on previously
inaccessible components of the genome and analyse the DNA
methylation sequence composition and distribution. We also
describe the effect of various DNA methylation mutants on
genome-wide methylation patterns, and demonstrate that our
newly developed library construction and computational methods
can be applied to large genomes such as that of mouse.

To generate a DNAmethylation map at one-nucleotide resolution
across the genome, we adapted the Illumina 1G Genome Analyser
using Solexa sequencing technology (Illumina GA) for shotgun
sequencing of bisulphite-treated Arabidopsis genomic DNA.
Sodium bisulphite converts unmethylated cytosines to uracils, but
5-methylcytosines remain unconverted. Hence, after amplification
by polymerase chain reaction (PCR), unmethylated cytosines appear
as thymines and methylated cytosines appear as cytosines7. We
created genomic DNA libraries after bisulphite conversion and pro-
duced,3.8 billion nucleotides of high-quality sequence that success-
fully mapped to the genome. We subsequently used several filters to
ensure accuracy, including only retaining reads mapping to
sequences that are unique in the genome after bisulphite conversion
from every possible methylation pattern (see Supplementary
Methods and Supplementary Table 1). This resulted in a conservative
data set of ,2.6 billion nucleotides mapping to unique genomic
locations with very high confidence, covering ,93% of all cytosines
that could theoretically be covered (,92% of the ,43million
cytosines in the ,120-megabase (Mb) Arabidopsis genome can be
covered uniquely with 31 nucleotide sequences). This represents
,20-fold average coverage, similar to typical coverage in a traditional
bisulphite-sequencing experiment for a single locus.

Methylation in Arabidopsis exists in three sequence contexts: CG,
CHG (where H is A, C or T) and asymmetric CHH1. We observed
overall genome-wide levels of 24% CG, 6.7% CHG and 1.7% CHH
methylation (Supplementary Fig. 1a). Most CGs were either
unmethylated or highly methylated (80–100%), whereas CHH sites
were either unmethylated ormethylated at,10%. CHG sites showed
a more uniform distribution of between 20% and 100% (Supple-
mentary Fig. 1b–d). These differences underscore the fact that each
type of methylation is under distinct genetic control1. Our reads also
contained 504-fold average coverage of 99.97% of theoretically cov-
erable cytosines in the unmethylated chloroplast genome3,8, giving
false-positive rates of 0.29% (CG), 0.29% (CHG) and 0.25% (CHH)
(Supplementary Figs 1a and 2). The BS-Seq data were highly consist-
ent with traditional bisulphite sequencing data from individual
methylated or unmethylated loci3 (Supplementary Table 2, Supple-
mentary Fig. 3, and below).

Although CG, CHG and CHHmethylation were highly correlated,
showing enrichment in repeat-rich pericentromeric regions (Fig. 1a),
a marked deviation was found within gene bodies, which contained
almost exclusively CG methylation (Fig. 1b). This is consistent with
previous studies3,4,9 and with a depletion of short interfering RNAs
(siRNAs) in the bodies of genes (Fig. 1b). Conversely, genomic
regions corresponding to siRNAs were highly correlated with CG,
CHG and CHH methylation, consistent with the known molecular
nature of RNA-directed DNA methylation (Fig. 1c)1. For methyla-
tion of all types there was a strong positive correlation with the length
of the methylated sequence (Fig. 1d).

BS-Seq seems to bemore sensitive than previously usedmicroarray-
based methods3–5. For example, we found a cluster of five methylated
CG sites in a 34-base-pair region and a lone methylated CG site, both
within the FWA locus, that were not detected by previous methods
(Supplementary Fig. 4). We also found CG methylation within
genes previously classified as unmethylated3,4 (Supplementary Fig.
5). Finally, in analysing genes for which expression is de-repressed
in DNA methyltransferase mutants, BS-Seq was more accurate in
identifying genes with promoter methylation that was otherwise vari-
ably detected in previous microarray studies (Supplementary Fig. 6).

BS-Seq can be used to analyse repetitive sequences that are difficult
to study with microarrays as they may exceed the dynamic detection
range or cross-hybridize. For example, we mapped methylation
across the highly repetitive Arabidopsis ribosomal DNA loci and
found high levels of CG, CHG and CHH methylation, including on
the minimal promoter and upstream SAL1 repeats (Supplemen-
tary Fig. 7). Further, we detected methylation in telomeric repeat
sequences (CCCTAAA)n that have not been previously shown to
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Figure 1 | Methylation of different fractions of the Arabidopsis genome.
a, Chromosome-wide distribution of methylation and correlation with
repeats in sliding 100-kb windows. b, Methylation levels and siRNA
abundance26 are plotted across different types of repeats and genes. c, High
levels of methylation are detected at loci corresponding to siRNAs.

d, Relationship between methylation levels and the length of different types
of repeats and genes. e, From left to right, methylation levels of the three
consecutive cytosines in the (CCCTAAA)n telomeric repeat unit are
calculated in wild type (WT) and the drm1 drm2 cmt3mutant, respectively.
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Figure 2 | Sequence preferences
for methylation in CG, CHG and
CHH contexts. Logos of sequence
contexts that are preferentially
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levels for 7-mer sequences in which
the methylated cytosine is in the
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7-mers in chromosome 1 were
analysed, whereas, in b, sequences
were restricted to previously
defined methylated sequences3. The
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be methylated (Fig. 1e). Interestingly, most methylation occurred at
the cytosine in the third position (Fig. 1e).

The single-base resolution of BS-Seq allows determination of the
precise boundaries between methylated and unmethylated regions.

For example, we found that the boundary between tandem repeats
and flanking DNA showed a sharp drop in methylation, but DNA
methylation extended from inverted repeats into flanking DNA,
showing a more gradual reduction (Fig. 1b). This apparent ‘spread-
ing’ ofmethylationwas not correlatedwith siRNA spreading, because
siRNA-abundance levels drop sharply at the flanks of both tandem
and inverted repeats (Fig. 1b).

We analysed the relationship between sequence context and pre-
ference of methylation. We calculated the percentage methylation of
all possible 7-mer sequences in which the methylated cytosine was
either in the fifth position (allowing an analysis of four nucleotides
upstream of CG, CHG and CHH methylation; Fig. 2 and Supple-
mentary Table 3) or in the first position (allowing analysis of six
nucleotides following the methylated cytosine; Supplementary Fig.
8 and Supplementary Table 4). To ensure that sequence preferences
were not simply 7-mers enriched in particular components of the
genome, we analysed all of chromosome 1, only sequences previously
defined to be methylated by methyl-DNA immunoprecipitation, or
a group of 9,507 body-methylated genes containing mostly CG
methylation3 (Fig. 2 and Supplementary Figs 8 and 9). We observed
a surprisingly high level of sequence context specificity. The 7-mers
with the highest and lowest levels of methylation showed a 13-fold
difference for CG-methylation, an 11-fold difference for CHG
methylation, and .900-fold difference for CHH methylation (Sup-
plementary Table 3).

Sequences with the lowest CG methylation were highly enriched
for the sequence ACGT (Fig. 2 and Supplementary Fig. 9). Poorly
methylated CHG sites were depleted of upstream cytosines but
tended to contain cytosine after the methylated cytosine. This trend
is consistent with a nearest-neighbour analysis of wheat germ DNA
that found CAG and CTG sites methylated at a higher level than CCG
sites10. Highly methylated CHH sequences had a very specific con-
figuration, with a tendency for cytosines and CG dinucleotides to be
present upstream (Supplementary Table 3) and the sequence TA
following the methylated cytosine. In contrast, poorly methylated
CHH sequences always contained a cytosine after the methylated
cytosine, and frequently contained a cytosine but always lacked
an adenine two nucleotides downstream (Fig. 2 and Supplemen-
tary Fig. 8). These results are consistent with data from individual
plant genes showing that cytosines preceding a cytosine are under-
methylated whereas those following a cytosine are more heavily
methylated11–13, and with asymmetric methylation in mammalian
genomes that is found at CT and CA sequences more frequently than
CC sequences14. It is also of interest that Arabidopsis telomere
sequences (CCCTAAA)n are composed of nearly optimal asymmetric
target units, possibly explaining the high methylation of the third
cytosines (Fig. 1e). Although the molecular basis for these trends is
unknown, the results suggest that DNA methyltransferases show
strong sequence preferences beyond the CG, CHG and CHH con-
texts. Finally, we found that regions with higher concentrations of
CG dinucleotides were more heavily methylated at CG sites (Supple-
mentary Fig. 10). Interestingly, this is different from observations
in mammalian genomes, which show the opposite trend: CGs are
depleted in methylated regions and at a higher density in unmethy-
lated CpG islands.

We used autocorrelation analysis to examine the correlation
between methylation in different sequence contexts and methylation
at adjacent residues. We observed significant correlation between
methylated cytosines for distances up to 5,000 nucleotides or
more—probably a reflection of regional foci ofmethylation through-
out the genome and of large blocks of pericentromeric heterochro-
matin (Supplementary Fig. 11 and Supplementary Table 5). We also
found a high correlation of CHG and CHH methylation within
several nucleotides downstream of methylated CG sites, and a tend-
ency for CHHmethylation four nucleotides downstream of methyla-
tion at CHG sites (Supplementary Fig. 12 and Supplementary Table 5).
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Figure 3 | Methylation shows periodic patterns. a, c, Correlation of the
methylation status of cytosines in a CHH (a) and CHG (c) context. The x
axis indicates the distance between the two cytosines. The y axis indicates the
level of autocorrelation inmethylation. The red line shows a running average
of windows that are 62 bases around a single base. b, Fourier transform
analysis of CHHmethylation correlation. The x axis indicates the number of
cycles per 100 bases. The y axis is the amplitude of the corresponding
frequency. The peak at position 10 represents a periodicity of ten
nucleotides, with aP-value smaller than 102108 for observing this periodicity
value by chance in random permutations of the genome. In a–c, Monte
Carlo sampling of three data sets, each consisting of half the data, was used to
compute the mean and standard deviations of the autocorrelations and
Fourier transforms. Mean values are shown, and error bars (a and b)
represent standard deviations. In a and b, methylation from the whole
genome was analysed, whereas, in c, the analysis was restricted to previously
defined methylated sequences3 (see Supplementary Fig. 15 for details).
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These data suggest complex interactions between the different types of
methylation.

We analysed the propensity for full methylation of the strand-
symmetrical CG and partially symmetrical CHG sequences. As
expected, CG methylation on one strand was highly correlated with
CGmethylation on the opposing strand.We also saw a high correlation
for CHG methylation of the two strands, showing that, as for CG
methylation,CHGsites showa strong tendency for symmetricalmethy-
lation (Supplementary Fig. 12). Unexpectedly, we observed a correla-
tion between CHHmethylation on one strand, and methylation at the
cytosine three nucleotides downstream and on the opposite strand
(Supplementary Fig. 12 and Supplementary Table 5). Because the
sequence of such sites is CHHG, this shows that ‘asymmetric’ methyla-
tion shows a propensity for symmetricalmethylation at these sites, even
thoughmethylationonCHHGsites is not particularlyprominent in the
genome (Supplementary Fig. 8 and Supplementary Table 4).

Autocorrelation analysis also revealed a marked periodicity of ten
nucleotides (the length of one helical DNA turn) for CHH methyla-
tion (Fig. 3a, b). We confirmed this period using data from the whole
genome and from regions previously defined to be methylated, and
confirmed that the periodicity was not caused by our computational
filtering of the data (Supplementary Fig. 13).We observed this period
both when looking at the average methylation of cytosines in the
genome (Fig. 3a, b and Supplementary Fig. 13) and when individual
reads are examined directly (Supplementary Fig. 14). Mammalian
DNA methyltransferase 3a (Dnmt3a) was recently shown to act as a
tetramer with DNA methyltransferase 3-like protein (Dnmt3L), and
two active sites methylate two CG sequences spaced ,8–10 nucleo-
tides apart15. Because DOMAINS REARRANGED METHYLASE 2
(DRM2) is the main enzyme controlling asymmetric methylation in
Arabidopsis and is a homologue of Dnmt316, these data suggest that
the mechanism of action of these enzymesmay be conserved between
plants and mammals.

Autocorrelation also showed a period of 167 nucleotides (Fig. 3c
and Supplementary Fig. 15), which is similar to, but slightly shorter
than, estimates of the average spacing of nucleosomes in plant chro-
matin17–19. One explanation for this period is that nucleosomes or
particular histone modifications might dictate access to the DNA by
methyltransferase proteins. Furthermore, the slightly shorter length
of 167 nucleotides relative to most estimates of plant nucleosome

repeat length (175–185 nucleotides)17–19 suggests that DNA-
methylated chromatin may be more compact because of shorter
linker regions or depletion in linker histones20.

We used BS-Seq to study the genome-wide effects of a variety of
Arabidopsismethyltransferase mutants onDNAmethylation (Fig. 4).
The MET1, CMT3 and DRM1/DRM2 DNA methyltransferase
enzymes aremostly responsible for CG, CHG and CHHmethylation,
respectively, although at many loci CHG and CHH methylation is
redundantly controlled by CMT3 and DRM1/DRM2 (refs 1 and 12).
We sequenced and mapped ,90million nucleotides of BS-Seq data
from each of several combinations of DNA methyltransferase
mutants (Supplementary Table 1) including met1 single mutants,
cmt3 single mutants, drm1 drm2 double mutants, met1 cmt3 double
mutants, met1 drm1 drm2 triple mutants and drm1 drm2 cmt3 triple
mutants21. We then analysed the effect of these mutants on global
methylation, on methylation in genes and chromosomes, and on
methylation in rDNA and telomeres (Supplementary Table 6,
Figs 1e and 4, and Supplementary Figs 7 and 16). The met1 single
mutant, or any mutant combination containing met1, essentially
eliminated CG methylation throughout the genome. For instance,
gene-body methylation, which is almost exclusively CG, was elimi-
nated in all met1-containing strains (Fig. 4a). Surprisingly, in the
met1 drm1 drm2 triple mutant, we observed amarked hypermethyla-
tion of CHG sites in the bodies of genes (Fig. 4a). This methylation
was skewed towards the 39 end and in this way assumed a pattern of
methylation similar to the missing CG methylation. Although pre-
vious studies have suggested that the drm1 drm2 cmt3 triple mutant
eliminates CHG andCHHmethylation12, BS-Seq data shows residual
methylation (Supplementary Table 6), particularly in pericentro-
meric heterochromatin (Fig. 4b), suggesting that another enzyme is
involved22. Furthermore, the met1 cmt3 double mutant was equally
effective in reducing CHH methylation, as was drm1 drm2 cmt3
(Supplementary Table 6), suggesting that CHHmethylation depends
in part on the presence of CG and CHG methylation. These com-
pensating behaviours suggest that the different DNA methyltrans-
ferases act redundantly, and help to explain the viability of these
mutant combinations, whereas the met1 cmt3 drm1 drm2 quadruple
mutant causes embryonic lethality21.

The BS-Seq procedure described here should be generally useful in
other organisms. For example, we applied BS-Seq to quantify the
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overall genomic methylation difference between wild-type mouse
embryonic stem cells and cells carrying a mutation in the Uhrf1 gene
recently shown to control maintenance of CG methylation23,24. By
analysing ,60million nucleotides of shotgun sequencing data from
each, we found that Uhrf1–/– cells contained only 25% of the CpG
methylation level of the wild type (Fig. 4c). Furthermore, to demon-
strate that the complete analysis pipeline used for Arabidopsis is
applicable to larger genomes, we produced a library from mouse
germ-cell tissue and generated,46million nucleotides of high qua-
lity mapped BS-Seq data. Approximately 66% of the reads mapped
uniquely—a level only slightly lower than that of Arabidopsis
(Supplementary Table 1), suggesting that it is practical to apply
BS-Seq to entire mammalian genomes.

In summary, BS-Seq analysis of wild type and methyltrans-
ferase mutants has allowed a more detailed characterization of the
Arabidopsis methylome. In addition, the computational approaches
developed in this study should be generally useful for other short-
read sequencing genomics approaches. An installation of the UCSC
browser allowing community access to detailed methylation patterns
of individual genes and a source code distribution of the computa-
tional methods are available at http://epigenomics.mcdb.ucla.edu/
BS-Seq/.

METHODS SUMMARY
Construction and sequencing of DNA libraries. Bisulphite treatment of DNA
was performed as described previously25, except that adaptor sequences and PCR
conditions were modified and optimized for this study. Library generation and
ultra-high-throughput sequencing were carried out according to manufacturer
instructions (Illumina).
Processing of sequence data andmapping of reads.Rawdata from IlluminaGA
were processed using the initial stages of the Solexa software pipeline (Illumina)
into short reads, except that per-lane per-cycle multidimensional gaussian mix-
ture models (GMMs) were developed to optimize base call A-versus-C-versus-
G-versus-T probability distribution accuracies at each sequenced base compared
to the Solexa software pipeline’s ‘_prb’ files. Sequenced reads were mapped to
reference genomes fully using per-base probabilities from the GMMs using
highly optimized novel C11 tools. Sequences that mapped to more than one
position with similar scores (within 1% of the maximum likelihood mapping)
were removed to retain only reads that mapped uniquely. To eliminate uncon-
verted bisulphite reads, a filter discarded reads with three or more consecutive
methylated cytosines when each of these was in a CHH context, resulting in a
loss of ,0.23% of reads. This filter was effective and gave only minimal loss of
true CHH methylation (Supplementary Table 1 and Supplementary Figs 13, 17
and 18).
Validation of BS-Seq results. Traditional bisulphite sequencing was used to
validate BS-Seq results at select loci (Supplementary Table 2 and Supplemen-
tary Figs 4, 6 and 17). The PCR primers used in the validation are listed in
Supplementary Table 7.
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