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The maintenance of functional chloroplasts in photosynthetic
eukaryotes requires real-time coordination of the nuclear and
plastid genomes. Tetrapyrroles play a significant role in plastid-to-
nucleus retrograde signaling in plants to ensure that nuclear gene
expression is attuned to the needs of the chloroplast. Well-known
sites of synthesis of chlorophyll for photosynthesis, plant chlor-
oplasts also export heme and heme-derived linear tetrapyrroles
(bilins), two critical metabolites respectively required for essential
cellular activities and for light sensing by phytochromes. Here we
establish that Chlamydomonas reinhardtii, one of many chloro-
phyte species that lack phytochromes, can synthesize bilins in both
plastid and cytosol compartments. Genetic analyses show that
both pathways contribute to iron acquisition from extracellular
heme, whereas the plastid-localized pathway is essential for
light-dependent greening and phototrophic growth. Our discovery
of a bilin-dependent nuclear gene network implicates a wide-
spread use of bilins as retrograde signals in oxygenic photosyn-
thetic species. Our studies also suggest that bilins trigger critical
metabolic pathways to detoxify molecular oxygen produced by
photosynthesis, thereby permitting survival and phototrophic
growth during the light period.
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The daily light–dark cycle requires all oxygenic photosynthetic
species to survive the repeated transition from prolonged

darkness to phototrophic metabolism at dawn. Most plants are
unable to synthesize chlorophyll in darkness and therefore accu-
mulate photosensitizing chlorophyll precursors at night (1). Sun-
rise induces an oxidative burst as photosynthesis resumes, so the
transition to daylight requires careful coordination of many light-
dependent processes. Multiple photoreceptors perform such roles
in plants, the most notable being the red-sensing, linear tetrapyr-
role (bilin)-based phytochromes and the blue-sensing, flavin-based
cryptochromes and phototropins (2–5). Bilins are well-established
plant retrograde signals, synthesized in plastids but enabling light
sensing by cytosolic phytochromes. Phytochrome photoconversion
then triggers nuclear translocation to positively regulate photo-
synthesis-associated nuclear gene (PhANG) expression (6, 7).
Genetic studies suggest that plastids also export negative ret-

rograde signals, metabolites that suppress nuclear gene networks
targeted by phytochromes (8–10). Among these metabolites are
abscisic acid (ABA) (11), tetrapyrroles (12–14), 3′-phosphoade-
nosine 5′-phosphate (PAP) (15), β-cyclocitral (16), and methyl-
erythritol cyclodiphosphate (MEcPP) (17). Although hypothetical
export of a negative tetrapyrrole signal has received considerable
support, biochemical evidence for such a retrograde signal re-
mains equivocal in plants (18–20). Chlorophyte algae diverged
from the streptophyte plant lineage over 500 million years ago
but share a common chlorophyll a/b-based photosynthetic light-
harvesting apparatus with plants. They thus might be expected to

share similar mechanisms for light sensing and retrograde sig-
naling. However, many chlorophyte genomes lack phytochromes
(21–24), a deficiency offset by a larger complement of flavin- and
retinal-based sensors (25–30).
Despite the absence of phytochromes, all known chlorophyte

genomes retain cyanobacterial-derived genes for the two key
enzymes required for bilin biosynthesis (Fig. 1A): a heme oxygen-
ase (HMOX1) and a ferredoxin-dependent bilin reductase (PCYA).
Both genes are found in the nuclear genome and encode proteins
with apparent plastid targeting sequences (Fig. S1), which is con-
sistent with plastid synthesis of the known bilin precursors of
phytochromes, phycocyanobilin (PCB) and phytochromobilin
(PΦB), in streptophytes (31). Chlorophytes also possess a second
heme oxygenase gene (HMOX2).HMOX2 encodes an enzymewith
a predicted C-terminal transmembrane endoplasmic reticulum-
anchoring domain like those of mammalian heme oxygenases (32),
suggesting a gene of eukaryotic origin but lost in the streptophyte
lineage. Recent studies indicate that some chlorophyte species
even possess a second plastid-targeted bilin reductase (33).
Here we exploit biochemical and reverse genetic approaches to

explore the biological roles of bilin metabolism in the absence of
phytochromes, using the representative chlorophyte species Chla-
mydomonas reinhardtii. We show that plastid-localized HMOX1
and PCYA yield bilin metabolites that regulate a unique nuclear
gene network that potentially mitigates oxidative stress arising
from photosynthetic oxygen evolution during daylight while also
globally suppressing PhANGexpression. Retention of the cytosolic
HMOX2 confers the ability to scavenge extracellular heme as an
iron source, which together with HMOX1 permits survival of
C. reinhardtii under iron-limiting conditions. Our studies reveal
bilins as a versatile negative retrograde signal needed for sustaining
a functional chloroplast in light-grown C. reinhardtii cells.

Results
Chlamydomonas HMOX1, HMOX2, and PCYA Genes Encode Functional
Enzymes. To test their biochemical activities, we expressed and
purified recombinant HMOX1ΔTP (mature form lacking the
predicted chloroplast transit peptide), HMOX2ΔTM (soluble
form lacking the C-terminal transmembrane helix), and ΔTP, ΔN,
ΔC, and ΔNC truncations of PCYA in Escherichia coli (Fig. S2A).
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Both heme oxygenases were able to convert heme to biliverdin
(BV) IXα, although the specific activity of HMOX2ΔTM was
approximately one-fifth that of HMOX1ΔTP (Table S1). HPLC
analysis of reaction products showed a lack of catalytic regio-
specificity for HMOX2ΔTM, explaining its apparent reduced
activity. In contrast, HMOX1ΔTP exclusively yielded the IXα
isomer (Fig. 1B), consistent with high-throughput mammalian,
cyanobacterial, and plant heme oxygenases that are coupled with
an NADPH-dependent BV reductase (BVR) or with a ferre-
doxin-dependent bilin reductase (FDBR) such as PCYA or HY2
(31, 32). Heme oxygenases with relaxed regiospecificity similar to
that of HMOX2 have been documented from insects, organisms
that lack light-harvesting biliproteins, oxygen-carrying hemopro-
teins, and α-specific BV reductases (34). Recombinant PCYAwas
also active, with the core FDBR region of PCYA proving suffi-
cient for conversion of BV IXα to PCB (Fig. 1C). These results
implicate C. reinhardtii HMOX1 and HMOX2 as FDBR-coupled
and FDBR-uncoupled heme oxygenases, respectively.

Subcellular Localization Studies Reveal Distinct Pathways for Bilin
Synthesis in Chlamydomonas Cells. The plant-type heme oxygenase
HMOX1 and bilin reductase PCYA contain putative chloro-
plast transit peptides, whereas the animal-type heme oxygenase
HMOX2 possesses a predicted C-terminal transmembrane helix.
We determined the subcellular localization of the three enzymes
by confocal microscopy and by cell fractionation using mono-
specific antibodies to each protein. Immunofluorescence revealed
that HMOX1 and PCYA were distributed within the chloroplast
and were also present in whole-cell extracts of the cell-wall-
deficient C. reinhardtii strain CC849 (Fig. 2 A and B). Biochemical
fractionation studies confirmed that HMOX1 and PCYA were
both present in plastids (Fig. 2B Left) but absent in mitochondria
(Fig. S2B). Detection of these enzymes in the nonchloroplast
fraction arises from partial plastid lysis during fractionation, be-
cause the Rubisco large subunit RbcL is encoded in the plastid
genome yet was also seen in this fraction. Further fractionation
revealed substantial association of PCYA with plastid membranes

and HMOX1 distributed between stromal and membrane frac-
tions (Fig. 2B Left). Due to low expression, HMOX2 could not be
detected immunochemically in cell extracts. For this reason, full-
lengthHMOX2was overexpressed in strain CC849 (Fig. 2BRight),
which permitted localization to perinuclear and cytoplasmic
regions (Fig. 2A). Using a cell fractionation approach, we observed
a distinct localization of HMOX2 to both cytoplasmic membranes
and plastids (Fig. 2B Right). Although we cannot rule out some
association of HMOX2 with the outer plastid envelope, these
results indicate that HMOX2 is a nonspecific, low-throughput
heme oxygenase with a cytosolic active site.

Chloroplast HMOX1 and PCYA Are Responsible for Phycocyanobilin
Synthesis from Heme in Vivo. To establish that the chloroplast
HMOX1 and PCYA are also functional in vivo, we transformed
the bilin-binding cyanobacteriochrome (CBCR) reporter
NpF2164g5 from the cyanobacterium Nostoc punctiforme (35)
into the chloroplast genome of C. reinhardtii wild-type strain 4A+
(Fig. S2C). NpF2164g5 purified from 4A+ cells was shown to
possess a covalently bound PCB chromophore with an absorp-
tion spectrum indistinguishable from that isolated from PCB-
synthesizing E. coli cells (Fig. 3 A and B). HMOX1 and PCYA
thus comprise a functional PCB biosynthetic pathway in the
C. reinhardtii chloroplast. To assess the biological function of bilin
biosynthesis in C. reinhardtii, we next screened insertion libraries
for mutations in all three genes (36, 37). Insertional mutants
were identified for the two heme oxygenases, hmox1 and hmox2
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Fig. 1. Both annotated C. reinhardtii heme oxygenases (HMOX1 and HMOX2)
and PCYA bilin reductase genes encode catalytically active enzymes. (A)
Tetrapyrrole pathways of C. reinhardtii and their perturbation by artificial
introduction of mammalian biliverdin reductase (BVR). Feedback inhibition
of tetrapyrrole synthesis by heme is indicated by a dotted line, and depletion
of heme upon plastid expression of BVR is indicated by dashed lines. Chl,
chlorophyll; PPIX, protoporphyrin IX. (B) HPLC elution profiles of HMOX
metabolites and mixtures of BV isomers (α, δ, and β) obtained by chemical
oxidative degradation of hemin. (C) HPLC analysis of PCYA-catalyzed for-
mation of PCB from BV IXα and bilin standards (top traces). The asterisk
indicates an impurity.
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Fig. 2. Subcellular distribution of heme oxygenases and bilin reductase. (A)
Localization of HMOX1, PCYA, and HMOX2. DAPI, 4′,6-diamidino-2-phenyl-
indole staining of the nucleus and chloroplast DNA; IF, indirect immuno-
fluorescence; Light, bright field image; Merge, overlay of IF and DAPI.
Pyrenoid (P) and nucleus (N) are shown with arrows. (Scale bars, 5 μm.) (B)
Biochemical fractionation of HMOX1, PCYA,and HMOX2 as revealed by
immunoblot analysis of total cellular proteins (T), nonchloroplast superna-
tant (N) and intact chloroplast (CP), and soluble (S) and membrane-associ-
ated (M) proteins from chloroplasts. The nonchloroplast supernatant was
further separated into soluble (NS) and membrane (NM) fractions. Thirty
micrograms of protein of each fraction was loaded for immunoblot.
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(Fig. S1A; see also Table S2 for primers used for genotyping).
Unfortunately, we were able to obtain neither an insertional
mutant nor an RNAi or artificial miRNA (38) knockdown mutant
for PCYA. Immunoblot analysis confirmed that hmox1 was a null
allele (Fig. 3C), but the low expression ofHMOX2 in 4A+wild type
prevented immunochemical quantitation in the hmox2 mutant.
NpF2164g5 isolated from the hmox1 mutant lacked a covalently
bound chromophore but retained the ability to bind PCB in vitro
(Fig. 3B). These results demonstrate that HMOX1, and not
HMOX2, is required for PCB synthesis in vivo.

Both HMOX1 and HMOX2 Genes Are Required for Heme Iron
Acquisition Under Iron-Limiting Conditions. To examine the phe-
notypic consequences of hmox1 and hmox2 mutations, we tested
the hypothesis that one or both heme oxygenases were required
for growth on heme as the sole iron source, a known function for
heme oxygenases that do not generate the BV-IXα isomer (39).
We compared growth as measured by chlorophyll accumulation
in cultures of 4A+ wild type, hmox1 and hmox2 single mutants,
complemented single mutants, and hmox1hmox2 double mu-
tants. We used complete media (iron-replete), iron-deficient
media, or iron-deficient media supplemented with 10 μM hemin

or 20 μM Fe3+, concentrations chosen via pilot experiments
testing growth of wild type on iron-deficient media. All cell lines
harboring the hmox1 mutation accumulated significantly less
chlorophyll than did other genotypes, and complementation
studies show that the two heme oxygenases contributed addi-
tively to growth on extracellular heme as an iron source (Fig.
3D). Moreover, transcript levels of both heme oxygenases in-
creased upon heme supplementation of iron-deficient 4A+ cul-
tures (Table S3). Although both heme oxygenases contribute to
iron homeostasis in C. reinhardtii, the retention of the two genes
suggests nonredundant functions in extant chlorophyte species
under specific environmental conditions.

Light-Dependent Chlorophyll Accumulation and Photoautotrophic
Growth Are Severely Compromised by Perturbation of HMOX1
Function. We next examined light dependence of the hmox1
phenotype in 4A+ wild-type cells. Strikingly, photoautotrophic
growth of hmox1 cultures was strongly impaired, whereas het-
erotrophic growth of hmox1 cultures in darkness was indistin-
guishable from the wild type (Fig. 4 A and C and Fig. S3A). In
wild-type cultures, chlorophyll content per cell was nearly three
times higher in photoautotrophic cells than in heterotrophic
dark-grown cells. This light-dependent increase was not seen for
hmox1 mutant cultures (Fig. 4E). Both phenotypes were fully
complemented by expression of the wild-type HMOX1 allele
(Figs. 3C and 4 A, C, and E). By contrast, photoautotrophic
growth and chlorophyll levels of light-grown hmox2 mutant cul-
tures were indistinguishable from those of the light-grown wild
type (Fig. S4). These results indicate that the plastid heme oxy-
genase HMOX1 is essential for light-dependent chlorophyll ac-
cumulation and for normal photoautotrophic growth.
The striking chlorophyll deficiency of hmox1 mutant cells is

reminiscent of the phenotype of heme oxygenase-deficient plants,
which arises from heme feedback inhibition of chlorophyll syn-
thesis (Fig. 1A) and from the loss of phytochrome function (40,
41). To address a similar role for heme feedback effects, we in-
troduced a codon-optimized rat BVR gene into the chloroplast
genome of C. reinhardtii strain CC849. Mammalian BVR was
previously used to impair phytochrome responses in plants by
converting BV into bilirubin, thereby precluding phytochrome
chromophore synthesis (42, 43). BVR is assumed to decrease
heme levels by driving HMOX1-dependent heme turnover (Fig.
1A), alleviating product inhibition of heme oxygenase (32). Were
hmox1 phenotypes due to feedback inhibition of chlorophyll
synthesis by elevated heme, BVR expression should exert the
opposite phenotype. Immunoblot analysis confirmed expression
of BVR in three lines (Fig. S2D), all of which possessed chloro-
phyll-deficient, light-sensitive phenotypes similar to the hmox1
mutant (Fig. 4 B and D). The CC849 wild-type strain exhibited
a smaller light-dependent increase in chlorophyll than did 4A+
wild type, and BVR expression actually reduced chlorophyll levels
in the light. By comparison, BVR had no effect on chlorophyll
accumulation of dark-grown cells (Fig. 4F). These results argue
against the heme feedback hypothesis. We hypothesize that BV
IXα, or its metabolite PCB, is directly responsible for the light-
dependent accumulation of chlorophyll.

Biliverdin Feeding Rescues the Chlorophyll-Deficient Phenotype of
the hmox1 Mutant. To test the role of bilin in hmox1 pheno-
types, we examined the ability of exogenous BV IXα to rescue
the hmox1 mutant. Photoautotrophic growth of the hmox1 mu-
tant on agar plates was partially rescued by increasing doses of
BV IXα (Fig. 5A Upper). More significantly, chlorophyll content
per cell was fully restored to that of wild type by addition of 0.1
mM BV IXα to liquid cultures (Fig. 5A Lower). Light-dependent
chlorophyll accumulation of BV-treated hmox1 cultures also
paralleled that of the wild type, but untreated hmox1 cells
showed no increase in chlorophyll during the same time period
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(Fig. 5B). Control assays established that 0.1 mM BV IXα had no
measurable influence on growth of 4A+ wild-type cultures and
that there was no significant difference in chlorophyll content
per cell for hmox1 cultures grown in darkness with or without
0.1 mM BV IXα (Fig. 5B). We also failed to observe a significant
difference in cell-cycle progression for the two genotypes during
the transition from dark to light (Table S4). The hmox1 cells
were slightly larger than the wild type in darkness, which reflects
a larger proportion of hmox1 cells arrested in the 4N stage. Based
on these results, we conclude that BV supports a program of
greening that the hmox1 mutant lacks.

Global Transcriptomic Analysis Reveals a Bilin-Specific Network of
Gene Expression. The increase in chlorophyll per cell following
transfer of dark-grown C. reinhardtii cultures to light is somewhat
analogous to deetiolation in flowering plants, a process known to
be regulated by phytochromes and cryptochromes (44). Although
chlorophytes retain the ability to synthesize chlorophyll in the
absence of light and do not accumulate protochlorophyllide in

darkness (45), light-dependent accumulation of chlorophyll is
likely to be mediated by at least one photoreceptor. Indeed,
cryptochromes and phototropins have been implicated in the light-
regulated expression of various components of the C. reinhardtii
photosynthetic apparatus (29, 30, 46). To test the hypothesis that
bilins play a regulatory role during the dark–light transition in
C. reinhardtii, we performed a multifactor transcriptome analysis
using RNA sequencing (RNA-seq). We isolated RNA from
heterotrophic suspension cultures of 4A+ wild type and the
hmox1 mutant grown in darkness in the presence or absence of
0.1 mM BV IXα before and after transfer to light (∼150 μmol
photons·m−2·s−1). Our analysis focused on the subset of tran-
scripts whose expression was altered by more than a factor of two
after 30 min of illumination (i.e., jlog2Rj > 1, where R = ratio of
the expression estimates per gene for the light vs. dark samples).
Using a twofold expression cutoff and keeping the false discovery
rate below 1%, 2,024 and 2,071 differentially expressed tran-
scripts were detected in dark–light transition cultures of hmox1
and wild type, respectively (Fig. 5C, Right, and Dataset S1). More
than 92% of the genes whose expression was altered by light
were shared by hmox1 and wild-type genotypes, that is, 1,967
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Fig. 5. Biliverdin rescues the light-sensitive and chlorophyll-deficient
phenotypes of the hmox1 mutant. (A) Photoautotrophic (∼180 μmol pho-
tons·m−2·s−1) growth on agar media (Upper) and normalized total chloro-
phyll levels (Lower) of 4A+ and hmox1 suspension cultures in the presence
of BV IXα. Normalized total chlorophyll levels of 4A+ (blue) and hmox1
(red) after 7 d of growth is presented as described in Fig. 4. (B) Time course
of chlorophyll accumulation upon transfer to light. Exponential-phase cul-
tures grown in TAP medium in darkness supplemented with or without 0.1
mM BV IXα were transferred to white light (∼180 μmol photons·m−2·s−1).
Bars indicate the SD of three replicates. (C) RNA-seq reveals that BV regu-
lates gene expression in darkness (Left) and also rescues a subset of light-
regulated C. reinhardtii genes following the transfer from dark to light
(Right). The diagrams show the number of nonoverlapping and shared
differentially regulated transcripts with ≥twofold change and false dis-
covery rate < 1% for each pairwise comparison. Numbers of genes that are
also BV-regulated in the dark are shown in parentheses (Right). Genes of
each subgroup are listed in Datasets S1 and S2.
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genes out of 2,128 total in the two genotypes (Fig. 5C, Right, and
Dataset S2). One hundred and four genes were no longer reg-
ulated by light without HMOX1. BV feeding restored light reg-
ulation to 21 of these (Dataset S2), including a CTR-type copper
transporter, a glucosidase, a cation-transporting ATPase, ADP
glucose pyrophosphorylase, and a number of unannotated genes.
The shared group of light-dependent genes lacked obvious

homologs of early phytochrome-regulated genes and PhANGs
found in similar transcriptomic experiments with plants (6). Of
the 1,444 genes that were light-regulated in hmox1 mutant cells
supplemented with BV, 1,393 (96%) overlapped with the light-
responsive gene sets of both wild-type and mutant cells in the
absence of BV (Fig. 5C, Right, and Datasets S1 and S2). This
argues for a consistent ‟core group” of light-responsive tran-
scripts in C. reinhardtii that is distinct from that of strepto-
phyte plants. BV treatment damped light regulation for the vast
majority of these core group genes: many of the RNAs that in-
creased or decreased in abundance in the light changed to
a lesser extent in the presence of BV (Dataset S2). Genes in-
duced by light and suppressed by BV were enriched for protein
families involved in high light stress (e.g., encoding LHCSR1,
PSBS1, ELI3, HSP22, GPX, HSP70, and others). This suggests
that the initial transcriptional response to light in C. reinhardtii is
dominated by the response to oxidative stress, a combined effect
of photosynthetic oxygen evolution and pigment photosensiti-
zation (47, 48). We therefore attribute the ‟global” attenuation
of this response by BV to its ability to target a regulatory network
needed to reduce or prevent oxidative stress. This hypothetical
network is independent of the known SOR1 (Singlet Oxygen
Resistant 1)-mediated response (49), because transcription of
SOR1 and many SOR1-regulated genes is not affected in hmox1
cultures (Dataset S1). However, we cannot fully discount direct
attenuation of light exposure by BV as responsible for some of
the global suppression of PhANG expression in light.
We also identified a small number of BV-responsive genes in

dark-grown cultures (Fig. 5C, Left, 6 and 76 in hmox1 and wild
type, respectively; Dataset S1). All 6 of the BV-dependent genes
in dark-grown hmox1 were present in the list of 76 BV-re-
sponsive genes for dark-grown wild type. The less robust re-
sponse in the hmox1 mutant may be due to altered heme
homeostasis in the hmox1 cells, which would not be efficiently
rescued by BV feeding. Among the 76 BV-regulated genes are
mono- and di-oxygenases, FAD-, heme- and iron-sulfur-con-
taining redox proteins, a hemoglobin-like protein, and enzymes
involved in oxidative amino acid catabolism. The majority of
these genes, 70 out of 76 including all 6 HMOX1-independent
genes, were up-regulated. These results indicate that C. rein-
hardtii possesses a light-independent signaling pathway using
a plastid metabolite (bilin) to regulate nuclear gene expression:
in other words, a bilin-based retrograde signaling pathway.

Discussion
The presence of cytosolic membrane-associated heme oxygenase
in C. reinhardtii and other sequenced chlorophyte algae is un-
expected, because such animal-type heme oxygenases are absent
in both streptophyte algae and higher plants such as Arabidopsis
thaliana. All heme oxygenases found in A. thaliana contain chlo-
roplast translocation sequences that are sufficient for chloroplast
targeting of the fusion proteins (50). Our data indicate that the
animal-type HMOX2 of Chlamydomonas is a non-α–specific,
FDBR-uncoupled enzyme involved in heme turnover and iron
recycling. This suggests that, at the time of cyanobacterial capture,
the eukaryote host already possessed the ability to detoxify heme,
to scavenge iron from extracellular heme, and to make BV.
In response to environmental and developmental cues, multiple

pathways and metabolites are involved in relaying information
from plastids to nucleus to coordinate gene expression between
the two genomes (10, 14, 15, 17). Identification of gun mutants

(genome uncoupled) in A. thaliana using norflurazon implicates
the tetrapyrrole pathway as a source of negative retrograde sig-
nals. A specific role of the heme branch (Fig. 1A) as a positive
retrograde signal was proposed based on the ability of heme to
induce PhANG expression in undeveloped Arabidopsis plastids
(14). Heme was also found to regulate the expression of nuclear
genes transiently in C. reinhardtii (51). Our data provide evidence
that the heme catabolites BV and/or PCB specifically up-regulate
a subset of nuclear genes in C. reinhardtii in darkness. Our data
suggest that plastid-derived bilins function in the light as negative
signals to suppress PhANG expression in C. reinhardtii, a network
largely promoted by phytochromes in plants.
Based on the ability of exogenous BV to induce genes encoding

oxygen-dependent redox enzymes in darkness, we propose that
a bilin-responsive gene network in C. reinhardtii evolved to con-
sume oxygen and to detoxify reactive oxygen species produced by
light. We predict that a spike of PCB production occurs upon light
exposure due to the increase in oxygen evolution and heme re-
lease from damaged hemoproteins, factors that both enhance
HMOX1 enzymatic turnover. Heme turnover also will be facili-
tated by PCYA, which converts BV to PCB. We thus propose that
PCB is the bilin signal responsible for induction of a photo-
protective transcriptional program, because the genes regulated
by exogenous heme treatment in darkness differ from those ob-
served here (51–53). Our studies demonstrate that cells that lack
HMOX1 are poorly equipped to deal with the transition from
dark to light because they cannot produce bilins. This rationale
accounts in part for the rescue of the hmox1 mutant by exogenous
BV, whose uptake and metabolism by plants has been well
documented (54, 55). Unlike plants, C. reinhardtii lacks phyto-
chromes and other known bilin-dependent photosensors. The bilin
retrograde signal network is thus consistent with a heme-derived
retrograde signal to minimize light damage, while suppressing the
activity of photoreceptors that function to up-regulate PhANG
expression when light is present. Our inability to obtain a pcyA
mutant may therefore reflect an essential function of this enzyme
in C. reinhardtii, as has been shown in cyanobacteria (56).
Phytochromes are found in streptophyte algae (57, 58), at least

one chlorophyte species (22), and the glaucophyte Cyanophora
paradoxa (59), so we expect that PCB will serve as chromophore
precursor for positive regulation of PhANG expression in these
species. Our results raise the possibility that chlorophyte species
lacking phytochromes possess complementary regulatory systems
responsible for mediating the light-dependent increase in chloro-
phyll accumulation seen inC. reinhardtii. It is even conceivable that
undiscovered bilin-based light sensorsmight be responsible for this
response or for near UV- and blue-dependent responses of
C. reinhardtii not ascribed to flavin-based sensors (26, 60), because
PCB-based sensors can detect any wavelength of light from the
near UV to the near IR (61, 62). Alternatively, bilin-based retro-
grade signaling may be the sole reason for retention of the bilin
biosynthetic pathway in chlorophytes lacking phytochromes. In
plants, retention of the bilin signaling pathway would confer sig-
nificant adaptive advantage at the daily transition to photoauto-
trophic growth. Our RNA sequencing data implicate the bilin
signaling pathway in suppression of reactive oxygen intermediates,
a critical function for all oxygenic photosynthetic organisms that
must cope with diurnal fluctuations of light fluence, and also for
suppression of PhANG expression. Bilin biosynthesis thus pro-
duces an environmental integrating signal ideal for communicating
the physiological status of the captured photosynthetic organelle.
We therefore expect that bilin retrograde signaling will be widely
distributed among oxygenic photosynthetic organisms both with
and without phytochromes, including land plants.

Materials and Methods
Details are described in SI Materials and Methods. This includes information on
protein expression and enzyme assays, hmox1 and hmox2 complementation,
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chloroplast transformation, antibody production and western analysis, immu-
nofluorescence localization and cell fractionation, chlorophyll quantification,
Chlamydomonas growth on heme, and RNA-seq protocols. Chlamydomonas
strains were maintained at room temperature in TAP medium under
continuous low intensity white light.
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