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Protein interaction networks

Matteo Pellegrini†, David Haynor and Jason M Johnson

The study of protein interactions is playing an ever increasing role in our attempts to 
understand cells and diseases on a system-wide level. This article reviews several 
experimental approaches that are currently being used to measure protein–protein, 
protein–DNA and gene–gene interactions. These techniques have now been scaled up to 
produce extensive genome-wide data sets that are providing us with a first glimpse of 
global interaction networks. Complementing these experimental approaches, several 
computational methodologies to predict protein interactions are also reviewed. Existing 
databases that serve as repositories for protein interaction information and how such 
databases are used to analyze high-throughput data from a pathway perspective is also 
addressed. Finally, current efforts to combine multiple data types to obtain more accurate 
and comprehensive models of protein interactions are reviewed. It is clear that the 
evolution of these experimental and computational approaches is rapidly changing our 
view of biology and promises to provide us with an unprecedented ability to model cells 
and organisms at a system-wide level.
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One of the grand challenges for molecular
biology is to reconstruct the complete net-
work of protein interactions within cells. This
so-called interactome will shed unprecedented
light on the inner workings of cellular
machinery. Analysis of the network should
also permit scientists to select protein targets
for therapeutic intervention by understanding
the underlying mechanisms of action. Fur-
thermore, interaction maps may reveal how
drug–protein interactions lead, through pri-
mary or secondary mechanisms, to toxic side
effects. Eventually, protein networks may also
be used to construct comprehensive dynamic
models of molecular interactions within cells,
allowing scientists to quantitatively predict
the outcome of experiments. However, despite
the fact that high-throughput sequencing has
facilitated the prediction of proteins coded
within a genome, thus providing a list of the
interactome’s constituents, constructing such
powerful models on a genome-wide scale
remains a distant goal.

Within cells, proteins interact with other pro-
teins, metabolites and nucleic acids. Our under-
standing of protein–metabolite interactions is

perhaps the most complete, deriving from
decades of enzymological studies. Pro-
tein–protein interactions have also been meas-
ured using a variety of assays, such as immu-
noprecipitations and the yeast two-hybrid
approach. Recently, these techniques have
been scaled up to measure interactions on a
genome-wide level [1]. High-throughput tech-
niques have also been developed to systemati-
cally identify protein complexes using affinity
purification techniques followed by mass
spectrometry (MS) to sequence proteins [2,3].
Genome-wide protein–DNA interactions may
be measured using chromatin immunoprecip-
itation (ChIP) in conjunction with expression
microarrays [4]. Finally, genetic interaction
networks, identified by systematically con-
structed double knockout strains, have been
used to provide a different view of functional
linkage on a large scale in yeast [5]. Although
these approaches, depicted in FIGURE 1, have
been systematically applied to the lower
eukaryotes, they are only now beginning to be
applied on a large scale to measure protein
interactions in mammalian cells, where they
have greater therapeutic relevance.
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Along with experimental approaches to detect protein interac-
tions, computational methods have also been developed. These
methods search for pairs of proteins that have coevolved, imply-
ing that they are likely to be interacting within the cell. Coevo-
lution may be detected by searching for pairs of proteins that are
fused in some organism, found within the same sets of organ-
isms or have similar phylogenetic distances to members of their
respective families. Although computationally derived interac-
tions are generally not as reliable as experimentally measured
ones, they provide a more complete and accurate understanding
of protein interactions in combination with experimental data.

Over the past few years, several protein interaction databases
have been developed. These databases are populated by recent
high-throughput data and some of the smaller sets of interac-
tions reported in the literature over the past few decades. The
latter is an important source of content that significantly
enhances the data from high-throughput assays. However,
despite advances in natural language processing, it remains chal-
lenging to automatically extract information on protein interac-
tions from the literature, and therefore most of these data are
still extracted manually. As a result, current protein interaction
databases have mined only a small fraction of all the interactions
in the literature and cover an even smaller fraction of protein
interaction space. Nonetheless, the interactions within these

databases often provide clear molecular mechanisms for many
important biological processes.

Despite our limited ability to reconstruct a genome-wide pro-
tein interaction network for human cells, our attempts to identify
smaller interaction modules within the network have proven
more successful. Modules consist of conceptually distinct path-
ways responsible for, among other tasks, the metabolism of small
molecules or the transduction of signals across cell membranes.
Other modules contain the subunits of protein complexes. Sev-
eral public databases catalog the extensive knowledge that has
accumulated regarding the protein components of these pathways
and complexes.

How does the elucidation of protein interaction networks
advance drug discovery research? RNA expression microarrays
and other high-throughput molecular profiling approaches
have become integral to modern drug discovery research; how-
ever, the utility of these data to guide drug discovery is some-
times limited by the ability to interpret the biological meaning
of the results. Analyzing large data sets from a pathway perspec-
tive is one approach that can enhance understanding of the bio-
logical mechanisms affected in an experiment. This type of
analysis may involve, for example, asking which pathways are
perturbed in a disease population with respect to a healthy one,
which pathways are activated in adverse responses to a com-

pound, or which pathways distinguish
good from bad patient prognoses. Since
the number of pathways is significantly
smaller than the number of genes, and
many pathways are at least partially char-
acterized, this type of analysis can simplify
the interpretation of experimental results
when many genes are involved.

The availability of large data sets that
measure protein–protein, protein–DNA
and genetic interactions has also created a
need for methods to integrate these differ-
ent data types for a more comprehensive
view of protein interactions. For example,
recent drug discovery efforts are combining
the measurements of expression microarray
data with systematically measured geno-
types to map the genetic basis of transcrip-
tional regulation and disease [6]. The result-
ing networks of protein interactions are
enhancing efforts to reconstruct the genetic
basis of disease and discover novel targets.

Although we are only now beginning to
decipher protein interaction networks,
the impact that this research is having on
drug discovery can already be seen. As we
move closer to the goal of quantitatively
modeling human cells and cell systems,
the emerging protein interaction net-
works provide the raw materials for early
systems modeling efforts.
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Figure 1.  Schematic representation of the four principal experimental methods used to 
determine protein interactions. The two-hybrid assay to measure protein–protein pair-wise 
interactions (top, from [102]), the ChIP on Chip assay to measure protein–DNA interactions (right, from 
[103]), the construction of double knock-out mutants in yeast to measure gene–gene interactions 
(bottom, from [104], and the tandem affinity purification tag assay to pull down and identify the subunits 
of protein complexes (left, from [105]).
ChIP: Chromatin immunoprecipitation.
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Experimental measurements of protein interactions
Two techniques are widely used to measure protein–protein
interactions in a high-throughput fashion: yeast two-hybrid
assays and pull-down experiments on tagged proteins followed
by MS to identify interactors. These approaches have been
used to develop large-scale protein interaction maps in Saccha-
romyces cerevisiae [1,3], Helicobacter pylori [7], Drosophila mela-
nogaster [8], and Caenorhabditis elegans [9]. Various efforts are
also underway to apply these techniques to measure interac-
tions in the human proteome [10]. A more detailed description
of these two techniques is presented below.

Other high-throughput techniques have also been developed
to measure protein–DNA interactions. The most advanced is
the use of ChIP to pull down DNA fragments that are subse-
quently identified using hybridization microarray chips. This
so-called ChIP on Chip approach identifies many of the bind-
ing sites of transcription factors, and has been used to map the
binding sites of many known yeast transcription factors [4].

Finally, recent efforts to map genetic interaction networks
will also be described. These networks identify pairs of genes
that buffer each other and therefore only cause a phenotype
when deleted in combination. For example, a genetic interac-
tion screen has been performed in yeast to identify genes that
are not essential for cell survival when deleted one at a time,
but are lethal when deleted in combination [5]. Genetic interac-
tions often occur between genes that participate in the same
biological pathway or are physically interacting.

Protein–protein interaction assays
One of the most frequently used techniques to study pair-wise
interactions between proteins is the yeast two-hybrid assay.
This assay involves the use of GAL4, a transcription factor that
in the presence of galactose activates transcription of the GAL
genes, which encode galactose metabolic proteins. GAL4 con-
tains two domains, an activation domain and a DNA-binding
domain. In 1989, Fields and Song suggested that GAL4
hybrids could be used to report protein interactions [11]. The
strategy consists of forming two fusions between one protein
and the GAL4 activation domain and another protein with the
GAL4 DNA-binding domain. If the two proteins interact, then
the GAL4 activation domain and the GAL4 DNA-binding
domain will be brought into proximity with each other and the
reconstituted factor will activate the transcription of a reporter
gene, which has been engineered to contain the GAL4 pro-
moter. Thus, detection of the reporter gene in yeast implies that
the two proteins have interacted in the assay.

Over the past few years this strategy has been scaled up so
that it is now possible to efficiently measure thousands of bind-
ing events [1,6–9,12,13]. The most extensive interaction map,
measuring the binding of D. melanogaster proteins, contains
20,405 interactions among 7048 proteins [8]. The resulting net-
work has regions of high local connectivity, representing inter-
actions between subunits of protein complexes.

Typically, the observation of a single binding event using
the yeast two-hybrid assay is not a reliable indication that two

proteins interact in vivo [14,15]. One reason is that the two inter-
acting proteins are overexpressed in this assay and the observed
interaction may not therefore be present in the wild type cells
where the concentrations may be significantly lower.

Due to these limitations, various strategies have been devel-
oped to identify which of the interactions reported in a two-
hybrid screen are likely to be biologically relevant. In order to
evaluate whether an interaction is biologically relevant, various
supporting information such as annotation, cellular localization
and messenger RNA (mRNA) expression levels have been used.
The underlying assumption is that true interactions are likely to
occur between proteins involved in the same biological process,
proteins found in the same cell compartment, and proteins
whose mRNA are coexpressed.

For example, Kemmeren and coworkers used expression data
to evaluate the fraction of protein interactions pairs from a vari-
ety of data sets that are likely to be truly interacting [15]. They
discovered that among pairs of proteins with high confidence
interactions, 70% were coexpressed. In contrast, for high-
throughput protein interaction data sets, the percentage of
coexpressed proteins varied from 26 to 56%, implying that
interactions measured using high-throughput assays tend to
generate a significant number of false positives and that the
false-positive rate differs substantially depending on the experi-
mental protocol used. However, by identifying the coexpressed
pairs within a large protein–protein interaction screen, one is
able to recover the high confidence ones.

Some additional limitations of the two-hybrid approach
include the difficulty of detecting interactions involving mem-
brane proteins. To study membrane proteins, one must construct
GAL4 fusions with only the extracellular or cytoplasmic domains
of membrane proteins, adding an additional level of complexity
to the assay and resulting in the under-representation of these
domains in a large screen. The protein classes that are least repre-
sented in the D. melanogaster data are plasma membrane proteins
including receptors, ion channels and peptidases [8].

Large-scale two-hybrid screens have been reported for S. cere-
visiae, C. elegans and D. melanogaster but not yet for humans.
For drug discovery applications, a map of human interactions
will be more valuable than for these model organisms. None-
theless, interaction maps in model organisms could be useful in
human drug discovery. For instance, the D. melanogaster map
allowed the authors to hypothesize that therapeutic inhibition
of calcineurin phosphatases may be an attractive strategy to
treat human lymphomas [8].

Experimental measurements of protein complexes
Another approach that can be utilized to map protein interac-
tions is to tag a protein in the cell and then pull down the
tagged protein together with other proteins bound to it. The
identity of the interacting partners may be revealed using MS.
In contrast to the two-hybrid assays, which detect pair-wise
interactions between proteins, here an entire protein complex
can be identified since many proteins are typically found to
interact with the tagged protein.

http://www.future-drugs.com


Pellegrini, Haynor & Johnson

92 Expert Rev. Proteomics 1(2), (2004)

Two versions of this approach have recently been imple-
mented by groups that set out to map protein interactions in S.
cerevisiae [2,3]. In the first version, the tandem affinity purifica-
tion (TAP) tag was used [16]. The tag is coded into the 3´ end of
the chosen gene using homologous recombination. This ensures
that the tagged protein is expressed at native levels within the
cell. The TAP tag has two components that are used for an ini-
tial protein purification step, followed by cleavage of the first
tag. The second tag is then used for a subsequent purification
step. Following affinity purification of the tagged protein, the
product is separated using 1D sodium dodecyl sulfate polyacry-
lamide gel electrophoresis (SDS-PAGE). The identity of the
proteins in the various bands are then determined using matrix-
assisted laser desorption/ionization (MALDI) time-of-flight
(TOF) MS.

This methodology has also been applied to map the interac-
tions involved in tumor necrosis factor (TNF)-α signaling in
human cells [10]. The authors tagged 32 known and candidate
members of the pathway and identified 221 molecular associa-
tions. As expected, many associations were found among the
subunits of the nuclear factor (NF)-κB and IκB kinase (IKK)
complexes. This methodology was able to detect 70% of the
known interactions between the components of this pathway.
In addition to these, the study revealed additional complexes
that were not previously known to be involved in this signaling
cascade. The involvement a few of these with the TNF-α sign-
aling pathway was validated using an RNA interference (RNAi)
assay; specifically, the suppression of these genes using RNAi
modulated the NF-κB-dependent luciferase reporter activity.

In another implementation of these pull-down assays, genes
are tagged with the FLAG epitope tag [2]. In contrast to the pre-
vious approach, the genes are transiently overexpressed in a
plasmid fused to the FLAG epitope tag with heterologous
GAL1 or tet promoters. The subsequent steps are similar to
those described above: the proteins are affinity purified, passed
through an SDS-polyacrylamide gel and then identified using
tandem MS fragmentation.

The sensitivity and specificity of these procedures are diffi-
cult to determine, but may be approximated by comparing the
measured interactions with known ones. For example, in one
study, the yeast Munich Information Center for Protein
Sequences databse (MIPS) complexes were used as a reference
set [17]. Using this set, the TAP tag method generated a coverage
(i.e., fraction of a reference set of interactions observed in the
data) of 20% and an accuracy (i.e., fraction of observed interac-
tions confirmed by the reference set) of 10% while the
FLAG/overexpression approach yielded a coverage of 8% with
an accuracy of 2% [18].

For drug discovery applications it is not only important to
understand the interaction between subunits of proteins com-
plexes, but also the structure of the complex. A recent study has
combined the topological information obtained from pull-
down assays with electron microscopy data of the complexes to
model their 3D structures [19]. This approach demonstrates
how protein–protein interaction networks may eventually

contribute to detailed atomic level descriptions of protein com-
plexes, which may be helpful for the development of drugs that
interfere with the function of the complexes.

Protein–DNA binding studies
Many proteins act as transcriptional regulators by binding to
specific DNA sequences, typically upstream of genes, to affect
the rate of transcription. According to the MIPS database [17],
344 transcription factors have been identified within the yeast
S. cerevisiae. These factors may be identified by virtue of their
homology to known transcription factors and to DNA-bind-
ing domains. The binding sites of 106 of these transcription
factors have recently been mapped [4]. The strategy used to
map the binding sites of yeast transcription factors firstly con-
sisted of adding myc epitope tags into the genomic sequence of
the C-terminus of each regulator. ChIP was then used to pull
down the tagged protein and identify the DNA sequences
bound to it by hybridizing these against DNA microarrays. In
total the authors were able to identify 3985 high-confidence
protein–DNA interactions.

From this set of interactions, the authors were able to
reconstruct network motifs and classify them into six types: 

• Autoregulatory motifs, in which a transcription factor binds
to its own gene

• Multicomponent loops, in which a regulator binds to a gene
that affects the transcription of the first regulator

• Feedforward loops, in which two regulators affect a gene, but
then one of them also affects the other 

• Single input motifs, in which one factor affects 
multiple genes

• Multi-input motifs, in which multiple factors affect 
multiple genes

• Motifs where one regulator binds to a gene of another regula-
tor that binds to the gene of another regulator, and so on
forming a regulatory chain
This same ChIP on Chip approach has also been applied to

study the binding sites of human transcription factors [20–23].
One example of such studies involved the measurement of the
binding of three transcription factors known to be important in
liver and pancreas: hepatocyte nuclear factor (HNF)-1α,
HNF4α, and HNF6 [24]. ChIP assays were used to measure the
binding sites of these three factors in the upstream regions of
13,000 human genes. It was found that the three factors bind dif-
ferent promoters in liver cells and pancreatic islet cells, with rela-
tively little overlap. Furthermore, the number of binding sites for
each factor varies greatly, from 187 in liver for HNF1α to 910 for
HNF4α.  The observation that HNF4α binds to a large number
of promoters in islet cells provides a mechanistic explanation for
recent observations that polymorphisms in HNF4A (the gene
encoding HNF4α) may increase the risk of Type II diabetes by
disrupting the transcriptional program of these cells [25].

However, it should be noted that many current ChIP on chip
efforts only look for binding sites in regions that are proximal
to the gene and may therefore miss important but distant
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enhancer binding sites. For instance, Odom and coworkers
constructed arrays that spanned only 700 base pairs upstream
and 200 base pairs downstream of genes [24]. Using regularly
spaced microarray probes spanning the genome [26], genome-
wide ChIP on Chip experiments have also been conducted [20].
Cawley and coworkers looked at the binding of three transcrip-
tion factors, Sp1, cMyc and p53. They performed ChIP on
Chip experiments using arrays that contained on average one
probe for every 35bp sequence on chromosomes 21 and 22.
They identified a total of 353, 756 and 48 high-confidence
binding sites, respectively, for the three factors in Jurkat and
HCT116 cells.

The main conclusions drawn from this study are that these
three transcription factors probably bind 12,000 (Sp1), 25,000
(cMyc) and 1600 (p53) sites within the genome, far more than
one would have anticipated before full genome arrays were avail-
able. Furthermore, only 22% of these binding sites are located at
the traditional 3´ end of genes. The authors also noticed that
these factors regulate the transcription of many noncoding
RNAs. These RNAs were shown to be differentially expressed
when cells were exposed to retinoic acid and are therefore likely
to be biologically important. It is clear that these initial full
genome protein DNA binding studies are revealing a far more
complete and unexpected view of transcription.

Experimental measurements of genetic interactions
Through systematic deletion of all yeast genes, it was discovered
that approximately 80% of genes are nonessential (i.e., yeast
cells are able to grow and function when any single one of these
genes is deleted) [27]. However, in some cases, the combined
knockout of two individually nonessential genes is lethal.
Genes that are nonessential individually, but essential when
both are mutated, buffer each other’s function. These types of
relationships have been named genetic interactions.

Recently, advances in robotics have permitted the systematic
search of genetic interactions in S. cerevisiae [5,28]. By crossing
strains of yeast with single mutations, it is possible to generate
all possible double mutants. By screening these double mutants
for viability, it is possible to identify all genetic interactions.

The most comprehensive network of genetic interactions in
yeast to date was generated by crossing 132 strains missing a
query gene with 4700 strains lacking one of the nonessential
genes. The network generated from these crosses contains
about 4000 interactions among approximately 1000 genes [28].
In this network the average query gene has 34 genetically inter-
acting partners. This is larger than the average of eight interac-
tions found in yeast two-hybrid screens, but only a subset of
genetic interactions are between physically binding proteins.

One of the most significant properties of genetic interactions
is that they frequently occur between genes that act within the
same biological process. For example, 12% of genetic interac-
tions are between genes that belong to the same Gene Ontol-
ogy biological process category, an observation that has an
associated p value of 1e-322 of occurring by chance. It is also
found that genetic interactions often occur between subunits

of a protein complex (p = 1e-68), proteins with the same sub-
cellular localization (p = 1e-70) and proteins with the same
mutant phenotype (p = 1e-316) [28].

Much of the heritable mortality and morbidity in the world
is caused by multilocus diseases. The study of genetic interac-
tions could shed light on these human diseases. For example, in
cystic fibrosis it is known that secondary mutations to genes
other than the cystic fibrosis transmembrane conductance regu-
lator may aggravate the symptoms of the disease. Although
genetic networks have not been measured in human cells, it is
possible that RNA interference techniques may be used to sup-
press the expression of pairs of genes to map these types of
interactions.

Computational methods for predicting protein interactions
Along with the experimental techniques to measure protein
interactions listed above, several computational approaches for
predicting protein interactions have also been developed over the
past few years. These approaches rely on the hypothesis that
interacting proteins tend to evolve in a constrained fashion, since
mutations in one protein may affect its ability to interact and
thus affect another protein. Two techniques that one may use to
identify protein interactions computationally are described
below: the detection of protein fusions and phylogenetic studies
that reveal protein interactions.

Protein fusions
Protein sequence alignments are traditionally used to identify
homologous proteins. However, it is possible to slightly modify
the typical alignment procedure to identify protein fusions
[29,30]. In this case, one seeks two nonhomologous proteins that
align to different regions of another protein. In other words,
these two proteins are essentially fused into a single longer
polypeptide chain. The longer protein has been dubbed the
Rosetta Stone protein, because it often reveals that the two
fused proteins are interacting.

However, this approach may also yield a significant number
of spurious fusion events due to the fact that protein
sequences contain conserved domains. Some of these domains
are repeated hundreds of times throughout a protein sequence
database. For example, the zinc finger binding domain is
found in hundreds of human proteins. Since these domains
vary in sequence, they often appear to be nonhomologous by
standard alignment techniques. This may lead to a spurious
fusion observation between two proteins that contain differ-
ent zinc finger domains that align to another protein with
multiple zinc fingers.

To screen out these false fusion events, it has recently been
suggested that one may use the hypergeometric distribution in
EQUATION 1 [31]:

P k n m N, ,( )

n
k 

  N n–
m k– 

 

N
m 

 
---------------------------=

http://www.future-drugs.com


Pellegrini, Haynor & Johnson

94 Expert Rev. Proteomics 1(2), (2004)

where k represents the number of Rosetta Stone proteins found
between two nonhomologous proteins A and B, n the number of
homologs of protein A, m the number of homologs of protein B
and N the total number of proteins within the database. Accord-
ing to this function, proteins that have many homologs are less
likely to be involved in real protein fusion and are more likely to
appear fused since they contain a commonly found domain.

Predicting protein interactions using phylogenetic analysis
Over the past few years, the numbers of fully sequenced
genomes has grown dramatically to include over 100 organ-
isms. From the analysis of homologs across genomes it is possi-
ble to construct phylogenetic profiles [32]. These are binary
arrays computed for each protein in a genome and encode
whether a homolog of the protein is present in any of the fully
sequenced genomes. Proteins with similar phylogenetic profiles
are effectively coevolving, since they are often found together in
organisms. It has been found that subunits of cellular com-
plexes often coevolve. Therefore, this technique may be used to
identify protein–protein interactions [33].

However, it is difficult to discern subtle differences in the evo-
lution of paralogs using phylogenetic profiles. Paralogs are
homologous proteins that have emerged by duplication within a
species and would necessarily have very similar phylogenetic
profiles. In order to study the subtle differences in interactions
and function between paralogs, it is necessary to describe their
evolution more completely using standard phylogenetic distance
estimation techniques.

In order to estimate the evolutionary distance within a group
of homologous proteins, one must first construct a multiple
sequence alignment. This may be accomplished using the Clus-
talW program [34]. Once the multiple alignment has been built
it is possible to estimate the evolutionary distance between any
two sequences using the alignment score. It is then possible to
deduce the different interacting partners of paralogs by com-
paring the distance matrices of two protein families that are
known to contain interacting pairs. 

One might imagine that if two proteins interact, the evolu-
tion of one might be correlated with the other. For instance,
mutations that occur on a ligand might be compensated by
mutations to its receptor in order to maintain the lig-
and–receptor binding affinity. This phenomenon has in fact
been demonstrated in the case of chemokines and their associ-
ated receptors [35,36]. By correctly aligning the distance matri-
ces of ligands and ligand receptors, it is possible to partially
reconstruct which ligand is likely to bind which receptor [37,38].

Databases of protein interactions
Several databases that have been developed to store protein
interactions have been reported in the literature. Some of these
are general repositories of varied types of interactions such as
the Biomolecular Interaction Database (BIND) [39]. Other
databases, such as the Database of Interacting Proteins (DIP)
[40], IntAct [41], and the Molecular Interaction Database
(MINT) [42], report only protein–protein interactions. The

contents of DIP, a representative protein–protein interaction
database, are listed in TABLE I. Although for certain organisms
(e.g., S. cerevisiae) the map of protein interactions is quite
extensive, it is still very sparse for humans.

There are a several factors that limit the coverage of these
databases. The primary factor is that the experiments reported
in the literature measure only a fraction of all biologically rele-
vant protein interactions. Traditionally, these interactions were
measured using low-throughput techniques that permitted the
measurement of only one or a few interactions at a time.
Although these techniques are very accurate, they cover only a
tiny fraction of the expected interactome. As previously dis-
cussed, high-throughput protein–protein interaction assays are
now being performed on a variety of organisms. Although these
have dramatically expanded our coverage of protein interaction
space, they are still measuring only a small fraction of biologi-
cally relevant interactions. Furthermore, as discussed above, the
approaches generate high false-positive and -negative rates, in
part since they are often measured under conditions that are
different from those in vivo.

The other factor that complicates the collection of protein
interactions from the literature is that there are no reliable auto-
mated procedures for accomplishing this. Protein interaction
data are laboriously extracted from the literature by scientists one
article at a time. This manual approach has to date captured
reported interactions in only a small fraction of the 12 million
abstracts in PubMed [101]. Furthermore, usually only the abstracts
of the articles are searched for information and not the full text.

However, several techniques have been developed to aid scien-
tists in selecting which papers are likely to report a protein–pro-
tein interaction. One such approach measures the frequency of
keywords that discriminate papers that report protein interac-
tions from those that do not [43]. Using Bayesian statistics, they

Table 1. Contents of the Database of Interacting 
Proteins in 2004 [40].

Organism Proteins Interactions Experiments

Drosophila 
melanogaster 

7052 20,988 21,012

Saccharomycs 
cerevisiae 

4749 15,642 19,116

Caenorhabditis 
elegans 

2638 4030 4075

Helicobacter 
pylori 

710 1425 1425

Homo sapiens 896 1371 1989

Escherichia coli 421 516 971

Mus musculus 193 284 383

Rattus 
norvegicus 

84 107 154
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estimate the likelihood that a paper reports a protein interaction
based on the presence of the hundred or so discriminating words
in the abstract. By prioritizing papers according to these criteria,
the input of protein interactions into DIP has been rendered
more efficient. A similar approach named PreBIND [44] is used
to select papers that are likely to contain protein interaction data
to be inserted into the BIND database.

A more automated but less precise approach for identifying
protein interactions in text is to look for the co-occurrence of
protein names. A pair of proteins that often appears together in
abstracts is likely to be associated in the same biological process.
A fraction of these might even be physically interacting. It is
important yet difficult in this type of analysis to account for the
multiple synonyms that are given to each protein when cata-
loguing the coincidence of proteins in abstracts. The results of
one of these analyses is reported in the PubGene database [45].

In the near future, the extraction of protein interaction data
from the literature should be facilitated by the introduction of
a standard data model for interactions. Recently, a model has
been proposed by the Proteomics Standards Initiative, which is
a working group of the Human Proteome Organization [46].
This standard has been accepted by most of the databases
described above, and should ultimately be required for the
publication of protein interaction data in the literature.

Databases of protein pathways
Although it is important to reconstruct the network of pair-wise
interactions between proteins, it is often simpler but still useful
to classify proteins into sets that participate in a common biolog-
ical process. These sets correspond to partially distinct biological
modules that perform a specific function [47]. These could be
proteins that are the subunits of a protein complex, components
of a signal transduction pathway or enzymes that act on related
metabolites and comprise a biochemical pathway. Although it is
clearly useful to know how proteins within these sets are interact-
ing among themselves, for certain types of analyses described
below, this level of detail is not necessary.

One of the most widely used classification schemes of this type
is that developed by the Gene Ontology Consortium [48]. As a
part of this effort, three ontologies have been developed to group
proteins according to their biological process, molecular function
and cellular component. Each ontology represents relationships
between terms through a directed acyclic graph. These graphs
allows scientists to describe complex relationships between terms
that are increasingly more detailed and are associated with
decreasing numbers of proteins. An example of a simple ontology
is shown in BOX 1 for the histidine biosynthesis pathway, where,
for instance, one chain of terms from the most general to the
most specific is the following: physiological process, metabolism,
amine metabolism, amino acid metabolism, histidine family
amino acid metabolism, and histidine metabolism.

Another valuable resource for information on protein path-
ways is the Kyoto encyclopedia of genes and genomes [49]. This
database contains dozens of pathways spanning a broad range
of biological processes: metabolism, genetic information

processes and human diseases. For each pathway, the enzymes
involved are presented and mapped to proteins in a specific
organism. The pair-wise relationships between proteins and
metabolites are also contained in the pathway descriptions. 

Pathway enrichment analysis
Many high-throughput technologies used in drug discovery
research generate large lists of genes or proteins that must be
further analyzed in order to generate hypotheses from the
experiments. For example, the list of significantly perturbed
genes in an expression microarray experiment measuring the

Box 1. Ontology for the histidine biosynthesis pathway.

$Gene_Ontology GO:0003673

 <biological_process  GO:0008150

% physiological process  GO:0007582

% metabolism  GO:0008152

% amine metabolism  GO:0009308

% amino acid metabolism GO:0006520 

% carboxylic acid metabolism GO:0019752

% amino acid and derivative 
metabolism  

GO:0006519

% histidine family amino acid 
metabolism 

GO:0009075

% histidine metabolism GO:0006547

% amino acid and derivative 
metabolism  

GO:0006519

% amino acid metabolism GO:0006520

% carboxylic acid metabolism GO:0019752

% amine metabolism GO:0009308

% histidine family amino acid 
metabolism 

GO:0009075

% histidine metabolism GO:0006547

% organic acid metabolism GO:0006082

% carboxylic acid metabolism GO:0019752

% amino acid metabolism GO:0006520

% amino acid and derivative 
metabolism 

GO:0006519  

% amine metabolism GO:0009308

% histidine family amino acid 
metabolism 

GO:0009075

% histidine metabolism GO:0006547

 <cellular_component GO:0005575

 <molecular_function GO:0003674
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response to a drug in a rat may be analyzed to understand if
pathways associated with known toxicities have been perturbed.
In general, lists of proteins or genes could come from pull-
down assays, expression microarray experiments or from MS
proteomics studies. 

One approach for annotating lists of genes is to compare
them with previously annotated gene sets from pathway data-
bases. In other words, if a list of genes upregulated in an
expression microarray experiment overlaps significantly with
the Gene Ontology histidine biosynthesis genes, one would
conclude that the experimental condition used has stimulated
the activity of this pathway. An example of an application that
performs this type of analysis is the Expression Analysis Sys-
tematic Explorer (EASE) [50]. Among other capabilities, this
tool measures the overlap between and initial list of genes with
Gene Ontology biological process categories. The significance
of the overlap is calculated using a hypergeometric probability
distribution, to estimate the probability of finding the
observed overlap by chance. As an example, the authors auto-
matically computed the Gene Ontology terms associated with
a gene expression study by Kayo and coworkers on the influ-
ence of aging and caloric restriction to the transcriptional pro-
file of skeletal muscle in rhesus monkeys [51]. They find that
the terms computed with EASE (mitochondrion and electron
transport) matched the terms Kayo and coworkers had found
through a literature search. However, in contrast to the approx-
imately 200 h required for the literature search, EASE was able
to perform the analysis automatically in just a few minutes.

Since one can associate a given gene list from an expression
experiment with known pathways, it is also possible to identify
pathways that are differentially expressed between two patient
populations (e.g., patients with and without a specific disease).
This type of analysis was recently performed on data collected
from healthy and diabetic patients [52]. The approach used was
termed Gene Set Enrichment Analysis, and attempted to iden-
tify the pathway that contained the most differentially
expressed genes between the two populations. The analysis
identified the oxidative phosphorylation pathway as the most
differentially expressed. Further analysis demonstrated that the
transcription factor PPAR-γ coactivator 1α, mutations in which
correlate with diabetes, is a regulator of this pathway.

Reconstructing & predicting networks from multiple 
data sources
As discussed above, multiple high-throughput experimental
techniques have been developed to study protein interactions.
As a result, integration of these data has emerged as an impor-
tant field of research in its own right. It seems clear that by com-
bining disparate data sets, a more accurate and comprehensive
view of protein interactions will emerge.

A simple Bayesian approach to combine multiple data types
to reconstruct yeast protein–protein interaction networks has
been described by Jansen and coworkers [53]. They accumulated
four types of data that could be analyzed to reconstruct inter-
acting proteins: yeast two-hybrid screens, mRNA expression

arrays, Gene Ontology terms, pathway annotation from the
MIPS database [17], and gene knockout phenotypes. They
established a set of true positive interactions (proteins in the
same MIPS complex) along with a set of true negative ones
(proteins localized in different cellular compartments). For each
method, it was then possible to compute the ratio of the proba-
bility that the observed relationship between two proteins was
found between true positive and false-positive pairs. These
ratios for each data type are then multiplied to yield the final
likelihood ratio that two proteins are interacting: 

The authors demonstrate that the interactions predicted by this
combined approach are of higher accuracy and coverage than
those generated by any individual method. For example, inter-
actions with a posterior likelihood threshold greater than ten
generated true positive to false-positive ratios of 1 for the com-
bined data and less than 0.1 for the individual data sets [53].
These types of data integration models will likely be species
specific. The methodology presented above to integrate dispa-
rate data types yields improved predictions of which proteins
are interacting but does not allow one to generate hypotheses
about the directionality of these interactions. For example, if we
inhibit the expression of a gene using RNAi, we would like to
know which other genes will change expression levels. In order
to generate such predictions, one needs to construct a network
with directed edges that imply that changes to one gene cause
changes in the other.

An example of the use of combined data to infer directed
interaction networks is that presented by Zhu and coworkers
[6]. Their approach exploits the collection of high-throughput
genotyping data in combination with expression profiling of
tissues in inbred mouse strains [54]. Combining these data
allows them to infer correlations between genotypes and gene
expression levels and thus to generate expression quantitative
trait loci (eQTL). These eQTL indicate polymorphisms that
affect the expression of genes. By observing how polymor-
phisms differentially affect coexpressed genes, the authors infer
which of the two genes is likely to be causing transcriptional
changes in the other. These causality relationships are then used
as prior information to bias the construction of Bayesian net-
works built from expression and genotype data from crosses of
inbred mouse strains. Zhu and coworkers are able to demon-
strate the predictive power of their network by considering the
subnetwork downstream of 11β hydroxysteroid dehydrogenase
(HSD11). Previous studies demonstrated that an inhibitor of
HSD11 caused significant changes in the expression of 176
genes. Of the 33 genes downstream of HSD11 in these net-
works, 16 overlapped the set of 176. The probability of this
overlap occurring by chance is only 1.1e(-5), demonstrating
that the network can be used to predict the outcome of drug
perturbation experiments.
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Conclusions
Protein networks present a detailed view of molecular interac-
tions and the molecular basis of biological processes. Although
the false-positive and -negative rates for networks generated
from high-throughput methods are currently high, new experi-
mental techniques and new methods for integrating multiple
interacting data types will allow these networks to become pow-
erful predictive tools. In order to use this knowledge to impact
human disease research, we must understand how genetic or
environmental perturbations to these networks generate disease
phenotypes. Subsequently, we must uncover how perturbations
to individual components of the network using drugs can
reduce or eliminate the disease phenotype.

The study of genetics has been one of the primary tools used
to infer how changes to individual genes, and ultimately protein
networks, causes disease. More recently, high-throughput RNAi
assays have permitted the mapping of perturbations in gene
expression to phenotypic measurements. For example, a recent
genome-wide RNAi screen of D. melanogaster embryonic hemo-
cyte (blood cell) lines revealed 438 genes that showed strong
growth phenotypes [55]. Among these, 50 had homology to
genes linked to disease in humans, suggesting that the study of
model organisms may be valuable to study human diseases.

The integration of information from large-scale protein inter-
action networks with phenotypic screens could fundamentally
change our drug discovery process. It is possible that such tech-
niques could in the future generate a large number of new thera-
peutic intervention points leading to novel treatments of diseases.

Expert opinion
Comprehensive surveys of protein interaction maps are now
accessible through high-throughput technologies. The first

surveys looked at protein–protein interactions while more
recently protein–DNA and gene–gene interaction maps have
also been measured. Although most of the initial work was
performed in S. cerevisiae, we are now seeing the first interac-
tion maps for more complex organisms such as D. mela-
nogaster. In parallel to this experimental work, computational
methods have also been developed to predict protein interac-
tions from protein sequence data. A large emphasis of com-
putational work is now being devoted to the integration of
all these data to arrive at the most accurate and comprehen-
sive networks possible. Nonetheless, even the most sophisti-
cated efforts are still only beginning to glimpse protein inter-
actions in detail. Although these networks are providing us
with global views of cellular organization, they are not yet
developed enough to systematically predict the outcomes of
perturbation experiments.

Five-year view
The major milestones that will likely be met during the next
5 years will be the application of high-throughput technolo-
gies to measure interactions in human cells. We will most
likely have measured genome-wide networks of protein–pro-
tein, protein–DNA, protein–metabolite and gene–gene inter-
actions in human cells within 5 years. This data, when coupled
with more sophisticated network modeling approaches than
those used today, will generate predictive networks. Predictive
networks will be used to model the effect of perturbations on
the cell. These models will likely be able, with a reasonable
degree of accuracy, predict the outcome of RNA interference
experiments or the effect of adding drugs to cells. If so, they
will prove to be an indispensable tool for the development of
novel therapeutics.

Key issues

• High-throughput experimental techniques have been developed to measure protein–protein, protein–DNA and gene–gene interactions.

• Computational methods allow us to predict protein interactions from the study of protein fusions and coevolution.

• Several repositories of protein interaction data now exist, for example, the Database of Interacting Proteins and the Biomolecular 
Interaction Database.

• Gene set enrichment analysis may be used to identify biochemical pathways that are active within a data set.

• Multiple data types may be combined using Bayesian networks to generate more accurate and comprehensive views of protein 
interactions than those provided by a single data type.

• Our understanding of global protein interaction networks is advancing at a rapid pace and promises to revolutionize our 
understanding of system-wide molecular biology.
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