Chapter 9

Using Phylogenetic Profiles to Predict
Functional Relationships

Matteo Pellegrini

Abstract

Phylogenetic profiling involves the comparison of phylogenetic data across gene families. It is possible to
construct phylogenetic trees, or related data structures, for specific gene families using a wide variety of
tools and approaches. Phylogenetic profiling involves the comparison of this data to determine which
families have correlated or coupled evolution. The underlying assumption is that in certain cases these
couplings may allow us to infer that the two families are functionally related: that is their function in the
cell is coupled. Although this technique can be applied to noncoding genes, it is more commonly used to
assess the function of protein coding genes. Examples of proteins that are functionally related include
subunits of protein complexes, or enzymes that perform consecutive steps along biochemical pathways.
We hypothesize the deletion of one of the families from a genome would then indirectly affect the function
of the other.

Dozens of different implementations of the phylogenetic profiling technique have been developed over
the past decade. These range from the first simple approaches that describe phylogenetic profiles as binary
vectors to the most complex ones that attempt to model to the coevolution of protein families on a
phylogenetic tree. We discuss a set of these implementations and present the software and databases that
are available to perform phylogenetic profiling.
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Coevolving proteins

1. Introduction

The remarkable improvements in sequencing technology that
have occurred over the past few decades have made the sequenc-
ing of genomes an ever more routine task. To date about 1,000
bacterial genomes have been sequenced along with dozens of
eukaryotic ones. Along with the genome sequences themselves,
annotation efforts have also progressed so that most new genome
sequences are accompanied by detailed descriptions of the positions
of the genes encoded within the genome, and the functions of
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the proteins and noncoding RNAs that are encoded in the genes.
One of the fundamental challenges for computational biologists
and bioinformaticians is the inference of interaction networks
between these genes that enhance our ability to understand the
function of the gene products. To this end, here we discuss
the phylogenetic profiling technique, and its uses for probing
functional association between proteins.

Sequence homology is the primary tool used to assign a
function to a protein. If two proteins have significant similarities
between their sequences, then they likely descended from a
common ancestor and share a common function. As our experi-
mental knowledge of protein functions increases, this approach
allows us to pass functional annotation from a characterized
protein to its uncharacterized homologs, and thus annotate an
ever-growing number of sequenced proteins. Nonetheless, gaps
in our knowledge still remain, which lead to lack of any meaning-
ful functional annotation for many protein families. The function
of these orphan proteins may not be studied using homology-
based computational approaches, and therefore a different class
of nonhomology algorithms must be used in these cases. Among
these approaches, phylogenetic profiling is one of the primary tools.

As genomes evolve, genes are deleted or are horizontally
transferred from one species to another. The intermingling of
genetic material between species, which is particularly common
among bacteria, makes the reconstruction of species phylogenetic
trees very challenging. At the same time, the abundance of genetic
exchanges between organisms offers a unique opportunity to
study the coupling of genes within genomes. If at the simplest
level we view genomes as bags of genes, and we have access to
hundreds of bags, then we can begin to identify pair-wise and
higher associations between the elements of the bags. In other
words, it genes are often transferred between organisms, we can
identify which sets of genes appear to transfer together. Genes that
are coupled in this manner are necessarily present or absent within
the same organisms, and it is therefore unlikely to find one without
the other. The identification of these couplings allows us to infer
that the products of the two genes likely function together to achieve
a common biological function. They may be subunits of a protein
complex, or sequential steps in metabolic pathways. In either case,
an organism needs both genes to carry out their function, and having
only one of them likely decreases its fitness.

The search for co-occurring protein families across organisms
is often referred to as phylogenetic profiling. Here, we review
various implementations of phylogenetic profiling, and also dis-
cuss databases that use this approach to study protein function.
Finally, we discuss extensions of phylogenetic profiling that
involve higher order associations between genes.
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2. Structure
of Phylogenetic
Profiles

The first implementation of phylogenetic profiles consisted of
binary vectors that captured the presence or absence of homologs
of a reference protein across organisms (1). To construct these
profiles, first a reference genome was selected (e.g., E. colz). Each
E. coli protein was then aligned to the proteome of each fully
sequenced bacteria using BLAST (2). It a hit to one of the proteins
in another organism is identified by a significant BLAST threshold
(e.g., E < le-6),thenalisinserted in the corresponding position
of that organism in the phylogenetic profile. If no significant hit is
found, then a zero is inserted. Using this approach, the entire
length of the phylogenetic profile vector is populated. A schematic
representation of the construction of phylogenetic profiles is
shown in Fig. 1.

When using reference genomes to construct phylogenetic
profiles, one generates a separate phylogenetic profile matrix for
each organism. However, instead of computing the homologs
between a reference genome and other organisms, it is also possi-
ble to use orthologous protein families to populate a general
phylogenetic profile that does not require a reference genome.
The definitions of orthologous protein families vary across imple-
mentations, but one example is that provided by the clusters of
orthologous groups (COGs) database (3, 4).

Representations of phylogenetic profiles other than binary
vectors have also been developed. For example, in one case,
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Fig. 1. Schematic representation of the phylogenetic profile method. In panel (a), we see
four sample genomes with their respective proteins. Panel (b) shows phylogenetic
profiles that capture the presence or absence of these protein families across genomes.
We note that protein family one and five have identical profiles, and are thus coevolving.
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instead of a binary value, the logarithm of the BLAST expectation
score is used (5). Another approach used matrices instead of
vectors to represent each profile (6). The entries of the matrix
are the evolutionary distances between orthologous proteins, and
the matrix has dimension N x N, where N is the number of
organisms being considered, and one would thus generate N x
N x P profiles for a genomes, where P is the number of protein
families. These distance matrices may be compared by computing
an internal product that measures the similarity of the
corresponding cells across two matrices.

3. Metrics for
Comparisons
Between
Phylogenetic
Profiles

Once the phylogenetic profiles have been constructed, the next
step consists of systematically comparing all pairs of profiles to
detect protein families that have coupled evolutionary patterns.
The first approach developed to compare profiles used the Ham-
ming distance, or simply the number of positions where two
binary profiles have different values (1). However, this metric
does not provide a statistical framework for evaluating the likeli-
hood of observing a specific Hamming distances. To this end,
subsequent approaches used the hypergeometric distribution to
estimate the probability of observing a certain number, or greater
matches between two profiles (7). This metric was further refined
in other work to account for the different proteome sizes of
the organisms that are used to populate the phylogenetic profiles.
A weighted hypergeometric distribution Pvalue was developed to
address this limitation (8).

When nonbinary phylogenetic profiles are constructed, then
other metrics have to be used. Various studies have used mutual
information to measure the similarities between profile vectors (5).

4. Accounting for
the Phylogenetic
Tree of Organisms

Since the goal of phylogenetic profiling is the identification
of protein families that have coevolved, it is important to account
for the underlying phylogeny of the organisms used to construct
the profiles. The tree of organisms may be used to infer what
loss or acquisition events explain the profile of a specific protein
family. When comparing two profiles, it is then possible to use
parsimony to estimate the smallest number of differences that
explain the evolution of two protein families (9). This approach
allows us to separate pairs of profiles that have identical scores
when non-tree-based metrics, such as the ones described in the
previous section, are used.
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Fig. 2. Tree-based analysis of phylogenetic profiles allows us to identify the most
significant coevolutionary events. In panel (a), we see two protein families that co-
occur across genomes, but are only found in one branch of the species tree, thus we can
explain the pattern with a single loss event at the right branch of the first bifurcation, or
a single gain in the left branch of the first bifurcation. In contrast, panel (b) shows a more
interesting co-occurrence pattern that arose due to multiple coordinated loss events
across the species surveyed. We conclude that P3 and P4 are more likely coevolving,
and hence functionally related, than P1 and P2.

The simple example shown in Fig. 2 illustrates the advantage
of considering the underlying tree of organisms when comparing
two polygenetic profiles. In panel A, we see two profiles that are
identical, but can be explained by the acquisition of the protein in
one branch of the tree. In contrast, in panel B we see two proteins
that have repeatedly been lost and acquired in multiple branches
of the tree. Our hypothesis is that the latter pair is far more likely
to be functionally coupled than the former, since their evolution-
ary pattern requires more coordinated loss events.

Pagel et al. provided a formal model for the estimation of the
likelihood of coevolution of two protein families on a tree of
organisms (10, 11). They explicitly estimate the coupling para-
meters of two protein families and are thus able to derive an
estimate of their coevolution. However, this formalism requires
significant computational resources compared to the simpler
metrics.

Recently, we introduced an intermediate approach that par-
tially accounts for the tree of organisms, but is able to do so more
efficiently than the Pagel et al. approach (12). This method does
not consider the full tree of organisms, but only the ordering of
organisms within the tree. Dynamic programming may be used to
estimate the optimal ordering or organisms on a tree, by minimiz-
ing the distance between adjacent organisms represented by the
leaves of the tree (13). Armed with this information, it is possible
to implement a simple probabilistic model for the likelihood of
observing runs of matching ones in two binary profiles. This
allows us to separate pairs of profiles that have matches in only
one branch of the tree, from those that are co-occurring in diverse
branches of the tree. It also allows us to partially compensate for
the fact that certain branches are more populated than others in
cases, where a protein family is conserved across the entire branch,
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since both large and small branches would contribute a single run
of occurrences.

The simplest approach to partially account for the tree of
organisms when comparing phylogenetic profiles is to prune the
tree so that each group of related organisms is represented by a
single individual (14). Of course, there is some ambiguity asso-
ciated with the definition of a related group of organisms, as this
must be based on a somewhat arbitrary level of taxonomic similar-
ity. However, once this parameter has been established, this
method reduces the biases in the analysis that may arise from the
over-representation of one group with respect to another, but
does not explicitly correct the remaining biases that are addressed
by the two previous approaches.

5. Assessing

the Functional
Relationships of
Coevolving Protein
Families

Our hypothesis is that coevolving protein families likely share a
related function. A variety of methods have been developed to
test this theory. The simplest is to use existing pathway annotation,
such as that provided by the Gene Ontology Consortium (15). This
annotation allows us to group together proteins that act within the
same biological process. Examples of biological processes are the
cell cycle, specific metabolic pathways or large protein complexes,
such as the flagella. In order to demonstrate that coevolving pairs of
protein are functionally related, we simply demonstrate that these
pairs are more often members of the same biological process than
random pairs. If pairs of proteins within the same process are
considered true positives, and those in different processes true
negatives, then using a receiver operator characteristic (ROC)
curve allows us to measure the enrichment for true positives versus
false positives in a ranked list. These types of analyses also enable the
comparison of different approaches for the identification of phylo-
genetic profile pairs, as the methods that yields the largest area
under the ROC curve performs best (12, 16).

Beyond the demonstration that phylogenetic profiling allows
one to identify functionally related proteins, it is also possible to
use this approach to assign a function to a previously uncharacter-
ized protein family. That is, if nothing is known about the function
of protein family A, but using phylogenetic profiling one identifies
that it is coevolving with functionally characterized protein family
B, then it is likely that the function of A is similar to that of B.
A recent review demonstrates that over the years a variety of
examples of this “guilt by association” technique have been used
to predict and then verify the functions of previously uncharacter-
ized protein families (17).
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6. Higher-Order

Relationships

Among

Phylogenetic The analysis discussed so far has been restricted to the identifica-
Profiles tion of pair-wise relationships between phylogenetic profiles.

However, it is also possible that higher order relationships may
be identified. Here, we present two examples of approaches that
have been used to identify relationships between triplets and larger
groups of phylogenetic profiles.

The first approach searches for logic combinations of pairs of
triplets that match a third profile (4). For example, protein family
C may be present across organisms only when both protein
families A and B are present (see Fig. 3). Thus, C is not correlated
with the presence of A or B, but is only correlated with the
combined presence of families A and B. Bowers et al. developed
an implementation of this approach and were able to uncover a
large number of examples of logic triplets. They analyzed all eight
possible logic relationships and developed a metric for scoring the
significance of logic triplets.

A second method that uses higher-order relationships
between phylogenetic profiles was developed to identify protein
complexes that are duplicated within genomes (18). In this
approach, phylogenetic profiles are first compared to identify
significant pair-wise relationships. This leads to the creation of a
P x P binary matrix, where P is the number of profiles, whose
entries are one if the corresponding (i,j) pair is found to be
significantly related and zero otherwise. This matrix is then clus-
tered so that groups of profiles that are significantly related form
clusters along the matrix diagonal. These clusters might corre-
spond to components of pathways or protein complexes.

C:EPSP Synthase A:Shikimate Synthase B:Shikimate Synthase
COG 1685 COG0703
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Fig. 3. Logic analysis of phylogenetic profiles. Protein family C (EPSP synthase) is only
present in genomes that contain either protein families A (COG1685 Shikimate
Synthase) or B (C0G0703 Shikimate Synthase), but not both (exclusive or, XOR).
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Fig. 4. Phylogenetic profiles may be used to identify duplicated complexes. On the left,
we see a matrix of significant pair-wise relationships between the phylogenetic profiles
of the two corresponding proteins (black indicates significance and white lack of
significance). These proteins are clustered and ordered in the same manner on the x
and y axes. A block of significant relationships occurs off the matrix diagonal (upper left
to lower right). This pattern is due to coevolutionary relationships between the subunits
of the three complexes shown on the right. The 2 subunits of the blue complex
coevolves with the 3, 5, and 7 subunits, which are all homologous to each other. The
4 and 6 subunits show identical co-occurrence patterns. By using additional criteria,
such as the presence within an operon, it is possible to separate the three complexes
from each other.

Alternatively, one can also cluster the nonbinary version of the
profile similarity matrix, whose entries represent the distance
between two profiles.

Using this approach, Li et al. also identified off-diagonal
clusters. These arise when protein complexes are duplicated within
the genome. Consider, for example, a complex that is formed of
two subunits (2 and 3), and two other homologous complexes
which are formed of two subunits (4 and 5, 6 and 7), as illustrated
in Fig. 4. We assume that subunit 2 is homologous to 3,5, and 7.
In this case, the phylogenetic profile of protein 2 would be found
to coevolve with proteins 3, 5, and 7. Similarly, protein 3 coe-
volves with 2, 4, and 6. This pattern of relationships leads to an
off-diagonal cluster that contains the pair-wise interactions
between the six subunits. Separating these complexes using addi-
tional information, such as co-occurrence within operons, allows
one to identify the correct association between the subunits.
When applied to the genome of R. palustris, Li et al. used this
approach to identify a large oft-diagonal cluster that arose from
the duplication of a nitrogenase complex.

7. Available
Software

Several databases are available that utilize phylogenetic profiles for
functional annotation or network reconstruction. The most
widely used is the STRING database (19). This database is con-
structed using COGs and implements a continuous version of
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phylogenetic profiles, whose pair-wise similarity is evaluated using
mutual information. The underlying phylogenetic tree of organ-
isms is accounted for by collapsing into a single node those taxa
in which the presence or absence of a specific gene pair is in
agreement in all the species.

Another implementation of phylogenetic profiles is found in
the Prolinks database (20). Here, orthology is determined using a
simple BLAST cut-off criterion, and a reference organism must be
specified. The phylogenetic profiles are encoded as binary vectors
and their similarity is determined using the hypergeometric distri-
bution probability. In this implementation, the phylogenetic rela-
tionships between organisms are not accounted for, and each
genome is treated as an independent random variable (and there-
fore some closely related genomes can lead to a bias in the analy-
sis). However, future implementations will also include the “runs”
correction discussed above to partially compensate for this effect.
The PLEX (21) and ViSANT (22) databases implement phyloge-
netic profiling in a very similar manner.

8. Strength
and Pitfalls

As we have discussed, the phylogenetic profile approach treats
genomes as bags of genes, and does not consider the order of
genes within the genome. This is clearly an oversimplification, and
a variety of methods have been developed to search for pairs or
larger groups of genes that maintain their proximity across varied
organisms (23). Because transcriptional units in bacteria are oper-
ons and not individual genes, the evolutionarily conserved sets of
genes typically correspond to operons, or fragments of operons.
In fact, the conservation of proximity of groups of genes is a
strong indication that the group is a part of a bacterial operon.

Many of the databases we have discussed above incorporate
not only phylogenetic profiles in their analyses, but also some
form of gene proximity conservation measure. Since the pair-
wise predictions produced by these two approaches do not always
overlap, they may be combined using Bayesian techniques to
arrive at more accurate coevolutionary networks.

9. Perspectives

We have already seen that as the number of organisms in phyloge-
netic profiles grew from tens to hundreds, the ability of this
technique to identify biologically interesting coevolution events
has dramatically increased. We expect that these trends will con-
tinue as the number of genomes continues to increase. However,



along with these improvements the challenge will be the
development of efficient implementations of the approach that
can handle the ever-growing number of organisms with fully
sequenced genomes. The all versus all alignments of proteins
across thousands of genomes is a very computationally intensive
task. Furthermore, all the approaches that incorporate the tree of
organisms when computing the significance of two profiles are
also computationally demanding. Over the next few years, these
methodologies will need to be optimized to handle the thousands
of bacterial genomes that will be sequenced. These increases in
efficiency will undoubtedly be accompanied by ever more useful
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