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Characterizing the inherent flexibility of a protein provides an important link between structure and
function. In this article, we examine some of the methods used to determine protein flexibility, and
address several unanswered questions relating to them. We perform 4 ns simulations of bovine
pancreatic trypsin inhibitor (BPTI) in solution and in a crystal. For comparison, we also calculate
atomic fluctuations from room temperature x-ray diffraction data by two different methods: single
copy refinement with isotropic B-factors, and constrained multiple copy refinement. We reach the
following conclusions: (1) Crystal contacts significantly reduce atomic fluctuations, especially in the
flexible loop regions. (2) Center of mass motion in the crystal contributes 0.1-0.2 A to the rms
fluctuations, with little variation between parts of the protein. (3) Isotropic B-factors are an accurate
measure of atomic motion in the stable parts of the protein, but significantly underestimate motion
of the flexible sidechains. (4) Nanosecond scale simulations can obtain a reasonable sampling of
backbone atomic motion in the most stable regions, but are still too short to allow flexible regions
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to explore their full range of motion. © 1999 American Institute of Physics.

[S0021-9606(99)50220-1]

I. INTRODUCTION

Proteins are not rigid. This fact is well known, yet sur-
prisingly easy to overlook. The ‘‘native state’’ is not a single
conformation, but a whole ensemble of conformations which
are populated under physiological conditions. In many cases,
this flexibility is essential to biological function.? For ex-
ample, it allows enzymes to fit themselves around their
ligands, and molecular motors to convert chemical energy
into mechanical work. Therefore, characterizing the flexibil-
ity of a native protein is an issue of considerable interest in
relating structure to function. The goal of this article is to
examine some of the methods for doing this, and to address
some of the unanswered questions relating to them.

Most methods for studying flexibility involve measuring
thermal fluctuations. One observes the protein under equilib-
rium conditions, and measures how much each atom fluctu-
ates about its average position. To the extent that the protein
is free to explore its full range of motion, these thermal fluc-
tuations offer a direct measure of the protein’s inherent
flexibility.’

One of the most frequently used methods for doing this
is x-ray crystallography.* When a model is fit to crystallo-
graphic data, the fitting procedure yields a ‘‘B-factor’’ for
each atom, which describes how widely the electron density
is spread out around that atom’s location. This is generally
interpreted as a measure of the atom’s equilibrium fluctua-
tions about its average position, and hence of the protein’s
local flexibility.’

A second experimental method, nuclear magnetic reso-
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nance (NMR) spectroscopy, is also widely used for studying
equilibrium motion within proteins.® This method has an im-
portant advantage over crystallography, in that it can provide
some information about the time scale on which motions
occur. On the other hand, the physical interpretation of NMR
data is somewhat ambiguous. The parameters obtained
through NMR spectroscopy — generalized order parameters
and effective correlation times—can only be assigned a clear
physical meaning if one assumes a specific model for the
atomic motion.

Molecular dynamics (MD) simulations offer another ap-
proach for studying atomic fluctuations.” Given a simulation,
it is a simple task to calculate the magnitude of each atom’s
fluctuations about its average position, which can then be
directly compared to crystallographic B-factors. Of course,
the results will only be meaningful to the extent that the
computer model is an accurate representation of the real pro-
tein.

Each of the methods discussed above has unique
strengths and weaknesses. By combining all three, one can
gain a clearer understanding of atomic thermal motion than
from any one method alone. Specifically, we examine the
following issues:

(I) NMR experiments, and most simulations, study proteins
in solution, whereas crystallography deals with proteins
in a crystal. Presumably, the contacts with other mol-
ecules in the crystal tend to inhibit the protein’s motion.®
Thus, the fluctuations seen in a crystallography experi-
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ment may not be a good representation of the protein’s
inherent flexibility. Just how important this effect is re-
mains an open question.

(2) A molecule’s motion can be divided into two compo-
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nents: ‘‘internal motion,”” which consists of the move-
ment of one part of the molecule relative to another; and
‘‘global motion,”” which involves translations of the
molecule’s center of mass, as well as rotations of the
whole molecule about its center of mass. In most cases,
only the former is of interest. In NMR and MD, there are
straightforward methods for separating the two compo-
nents and eliminating the effects of global motion from
the data. This is not true for crystallography. Even in a
crystal, each molecule undergoes some limited amount
of global motion, which contributes to the measured
fluctuations.””'" Once again, the magnitude of this con-
tribution remains an open question.

(3) By calculating an average quantity from a computer
simulation, one implicitly assumes that the range of con-
formations seen by the simulation represent a reasonable
approximation of the thermodynamic ensemble. It is not
at all clear, however, that this is actually the case. Com-
puter simulations typically span only a few nanoseconds
or less. If the simulation time is too short, the range of
motion seen over the course of the simulation may be a
poor representation of the actual flexibility of the native
protein.

(4) The use of B-factors to infer atomic fluctuations is based
on a very strong assumption: that the fluctuations are
isotropic and Gaussian. If the true atomic motion is very
different from this, then B-factors may give a poor esti-
mate of its magnitude.'?

In this article, we provide answers to these questions by
studying the atomic fluctuations of the small protein bovine
pancreatic trypsin inhibitor (BPTI). First, we perform simu-
lations of the protein, both in solution and in crystal, in order
to estimate thermal fluctuations under both sets of condi-
tions. We then compare these estimates to the fluctuations
derived from room temperature crystallography data by two
different methods: conventional refinement using isotropic
B-factors, and a recently developed constrained multiple
copy refinement method.'* We do not directly compare these
results to NMR data, since the ambiguities in the interpreta-
tion of NMR makes a direct comparison difficult. However,
we occasionally make reference to the results of previous
NMR studies, when those results help to clarify the phenom-
ena we observe.

A. Solution versus crystal

The first two issues mentioned above can be studied by
simulating a protein in crystal form rather than in solution.
Of course, the simulation of a complete protein crystal is out
of the question. To model even a single protein molecule
requires a considerable amount of computer time, and a crys-
tal of any size would be far beyond the limits of any cur-
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rently existing computer. On the other hand, we can create a
reasonable imitation of a crystal by modeling a single crys-
tallographic unit cell, then applying periodic boundary
conditions.'* This should give an accurate representation of
the interactions between adjacent molecules.

This also allows us to characterize the global motion of
each molecule within the crystal. It does not completely
eliminate the need for global motion correction, since there
is nothing to prevent the entire unit cell from drifting parallel
to the walls of the simulation box. However, this correction
can be applied to the unit cell as a whole, while retaining the
motion of individual molecules relative to each other. There
is no need to correct for global rotations, since the periodic
boundary conditions enforce a set of crystal axes on the
model.

B. Constrained multiple copy refinement

An alternative to using isotropic B-factors for refining
crystallographic structures is a method known as multicon-
former refinement.'> Rather than fitting a single structure to
the experimental data, it uses an ensemble of structures,
which are simultaneously minimized so that their composite
electron density provides a best fit to the experimental dif-
fraction data. Atomic fluctuations can be derived from this
method by calculating the variation in the position of each
atom over the ensemble of structures. It is no longer neces-
sary to make any assumptions about the distribution of the
fluctuations. Therefore, whenever the motion differs signifi-
cantly from being isotropic and Gaussian, multi-conformer
refinement is expected to give a more realistic characteriza-
tion than isotropic B-factors.

This method has one serious problem. The use of mul-
tiple structures to fit the experimental data greatly increases
the number of fitting parameters. This means that it can only
be used with very high quality data sets. Otherwise, the ratio
of fitting parameters to data points becomes unreasonably
large, and the method merely fits to the noise in the data.

A new method has recently been developed, known as
constrained multiple copy refinement,'* which solves this
problem. It uses an ensemble of structures, usually about ten,
to fit the experimental data (Fig. 1). To maintain an accept-
able ratio of fitting parameters to data points, all bond
lengths and angles are held fixed at their ideal values. In test
cases, this method has been found to give a better fit than
conventional, single copy refinement methods, while using
roughly the same number of fitting parameters. In compari-
sons of the two methods on room temperature diffraction
data, the atomic fluctuations obtained by multiple copy re-
finement are usually found to be larger than those obtained
from isotropic B-factors, sometimes by as much as a factor
of 5 for side chain atoms.

C. Bovine pancreatic trypsin inhibitor

BPTI is a 58 residue protein belonging to the Kunitz
class of inhibitors. A number of crystal structures have been
determined for it,16’17 including several structures of BPTI
complexed with other proteins.'®! The core of the protein
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FIG. 1. Ten structures of BPTI, obtained by constrained multiple copy re-
finement of crystallography data (Ref. 13). The data was provided by Huber
(see Ref. 17). See discussion in Methods section.

consists of a triple stranded S sheet. A pair of helices are
found at the ends of the chain. It is a highly stable protein,
containing three sulfur bridges.

Residues 11-19 compose the principle binding loop.'®
This loop attaches to the enzyme binding pocket, forming an
intermolecular antiparallel [3-sheet. A secondary binding
loop, residues 34—39, also contributes to protease binding.

D. Multiple time step langevin dynamics

To perform the simulations described in this work, we
use a multiple time step Langevin dynamics algorithm,
which significantly reduces the amount of CPU time
required.”’ The principle behind simulation algorithms of
this type is that very fast motions, such as bond length and
angle oscillations, are not of interest. Therefore, rather than
trying to accurately calculate the motions of these very fast
degrees of freedom, we can save time by simply treating
them stochastically. They then act as a heat reservoir for the
rest of the system.

This separation is accomplished by using time steps of
various sizes. For the longest steps, we explicitly constrain
all bond lengths and angles to remain fixed. This allows a
much larger time step than would otherwise be possible. The
highly constrained steps are interspersed with shorter, uncon-
strained steps which allow the fast degrees of freedom to
remain in thermal equilibrium.

This may be contrasted with the multiple time step Ver-
let algorithms which have gained popularity in recent
years.”'?> These algorithms attempt to save CPU time by
recalculating some forces less often than once every time
step. Because they still integrate all degrees of freedom on
the fastest time scale present, they can never reduce the num-
ber of time steps required compared to conventional molecu-
lar dynamics. At best, they can reduce the CPU time required
for each time step by economizing on force evaluations. In
contrast, the multiple time step Langevin dynamics method
actually reduces the number of time steps required, by ignor-
ing the dynamics of the fastest degrees of freedom. As a
result, we estimate that our algorithm is 2—3 times faster than
multiple time step MD algorithms.
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FIG. 2. Root mean square fluctuations of C, atoms about their average
positions. (a) Fluctuations for the four solution simulations. (b) Fluctuations
for the four protein molecules in the crystal simulation. For the solution
simulations, all global motion of each molecule has been removed. For the
crystal simulation, only global translations of the entire unit cell have been
removed.

Il. RESULTS AND DISCUSSION
A. Convergence of fluctuations

We have performed five simulations of BPTI: one of a
crystallographic unit cell containing four protein molecules,
and four of a single protein molecule in solution. All of the
simulations are approximately 4 ns in effective duration. The
proteins remain quite stable over the course of the simula-
tions. The final root mean square (rms) C, deviations from
the starting structure range from 1.64 to 2.49 A for the four
molecules in solution, and from 1.59 to 1.78 A for the mol-
ecules in the crystal (after removing all global motion of
each molecule). These deviations are similar to those found
in other nanosecond scale simulations. For example, a 1 ns
simulation of BPTI*® found a deviation from the starting
structure of 1.56 A for the first 56 residues, while a 1.4 ns
simulation® found deviations as large as 1.81 A.

The rms fluctuations of the C, atoms about their average
positions are shown for the four solution simulations in Fig.
2(a), and for the four protein molecules of the unit cell in
Fig. 2(b). For the solution simulations, global motion has
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been removed by rotating and translating each structure to
minimize the rms C, deviation from the starting structure.
For the unit cell simulation, only global translations of the
whole unit cell have been removed.

Before we attempt to learn anything from this data, we
must first determine whether the simulations were long
enough for the results to have converged to their final equi-
librium values. Otherwise, our data will not represent an ad-
equate sampling of conformation space, and it will be diffi-
cult if not impossible to draw reliable conclusions from it.

For the solution simulations, the agreement between the
four curves is reasonably good. There are some differences
in the details, particularly in the less stable N-terminal re-
gion, but overall it is clear that the results have begun to
converge. We can therefore conclude that we have obtained a
reasonable sampling of those fluctuations which occur on a
time scale of 4 ns or less. We must be careful not to draw too
strong a conclusion, however, and assume that we have
sampled the full range of motion available to the protein. The
length of the simulations must always be kept in mind. If the
real protein experiences conformational transitions on a time
scale which is long compared to this, we would not expect
those transitions to occur during the course of our simula-
tions. We would then expect our simulations to converge
toward each other, but the converged fluctuations would still
not represent the full flexibility of the native protein.

The agreement between the four molecules of the unit
cell is much poorer. All four curves show fluctuations of
about the same magnitude, but the details of the curves differ
considerably from one molecule to another. Once again, the
differences are largest in the N-terminal region, roughly the
first 20 residues. This reflects the nature of the protein: the
binding loop is considerably more mobile than the central 8
sheet. Even in the core of the protein, however, we see sig-
nificant differences between molecules.

There are two obvious explanations for this discrepancy.
First, it is possible that crystal contacts inhibit conforma-
tional changes of each molecule. The equilibration process
would then be slowed down relative to a molecule in solu-
tion, and the results of the crystal simulation would be less
well converged than the solution simulations. Second, it is
possible that the simulation breaks the symmetry between
the four molecules. That is, they drift relative to each other
so that they are no longer exactly symmetrically positioned
within the unit cell. Each molecule then sees slightly differ-
ent surroundings, and hence displays slightly different fluc-
tuations.

There is some evidence for the latter explanation. If
symmetry were being exactly preserved, we should be able
to treat all four molecules as equivalent (after applying the
appropriate symmetry transformation to superimpose them).
We could then calculate a single set of fluctuations from the
complete ensemble of conformations of all molecules. In
fact, if we do this the fluctuations increase by roughly an
angstrom compared to those shown in Fig. 2(b). This indi-
cates that the molecules have moved such that their positions
are no longer exactly symmetric.

Presumably this is an artifact, either of the potential
function or, more likely, of insufficient equilibration. The
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FIG. 3. Deviation matrix for the crystal simulation. Black indicates identical
structures, while structures which differ by more than 1 A are indicated by
white. Intermediate shades of gray are used for deviations between O and
1A

true thermodynamic ensemble should exhibit the symmetry
which is observed experimentally in the crystal. If we could
run the simulation long enough, the molecules should return
to symmetrical positions, and the local fluctuations of the
four molecules should become identical. However, this
might take quite a long time. At present, the best we can do
is to average the four curves and take this as a best estimate
of the fluctuations. We do this for both the solution and
crystal simulations, and in the rest of this article, it is these
average curves which appear in all figures. The differences
between the curves shown in Figs. 2(a) and 2(b) can then be
taken as an estimate of the uncertainties in our results.

B. Deviation matrix analysis

Another method for assessing the exploration of confor-
mation space is to calculate the rms C, deviation of every
structure which occurs during the course of the simulation
from every other. The resulting matrix of deviations can then
be plotted as a two-dimensional image, as in Fig. 3. Black
corresponds to identical structures, while structures which
differ by more than 1 A are indicated by white. Metastable
states where the system remains for extended periods show
up as dark squares along the diagonal. Dark patches away
from the diagonal indicate that the system has moved away
from a configuration, then returned to it again.

Troyer and Cohen®* used this method to study a 1.02 ns
simulation of BPTI. They found that the protein moved
through a series transient states, undergoing small fluctua-
tions within each state before moving on to the next one. In
1 ns, they never saw it return to a state which it had visited
before.

In our crystal simulation, we see similar behavior. It is
also clear, however, that as the simulation progresses, the
system spends more time in each state before moving on to
the next one. The entire second half of the simulation is
spent in only two major states. The result is that, if we cal-
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culate atomic fluctuations based only on the second half of
the simulation, we obtain values significantly smaller than
those shown in Fig. 2(b).

This is, essentially, the time scale problem mentioned in
the introduction. Can a simulation spanning only a few nano-
seconds explore the same range of motion seen in an experi-
ment which lasts a billion times longer? Furthermore, if the
motion varies significantly from one part of the simulation to
another, then which part is a better representation of the ther-
modynamic ensemble?

Based on our results, it appears that a simulation can be
divided into two phases. Initially, the system is not trapped
in any sort of local energy minimum. It therefore moves
freely through a variety of transient states, with each part of
the protein exploring a wide range of motion. Eventually,
however, it settles down into a metastable local minimum,
and remains there for an extended period. If we are still to
sample the protein’s full range of motion, we need a simu-
lation which is long compared to the lifetimes of all local
energy minima. It is well known from NMR relaxation mea-
surements that proteins exhibit conformational transitions on
the time scale of a few nanoseconds,zs’26 but this is only a
lowest estimate. Indeed, there has been some experimental
evidence for protein domain motions occurring on a time
scale of roughly 1 microsecond.?® Thus, a simulation lasting
microseconds or longer might be required to fully explore
the protein’s range of motion.

A similar observation was made by Caves et al.>’ based
on simulations of crambin in vacuum. They found that ten
independent simulations, each spanning 120 ps, collectively
explored a larger region of conformation space than a single
simulation spanning 5 ns. Consequently, they recommended
using multiple short simulations, rather than a single long
one, for conformational sampling.

Although our results tend to support this strategy, they
also show that it must be applied with care. The early, un-
stable part of a simulation exhibits behavior which is quali-
tatively different from the later parts. Furthermore, it is
heavily influenced by the starting conditions, and may visit
regions of conformation space which are not significantly
populated under equilibrium conditions. Several short simu-
lations may explore a larger region than a single long one;
but there is no a priori guarantee that they offer a better
representation of the true thermodynamic ensemble.

This leads to an important question. How similar are
atomic fluctuations during the two phases? Clearly the rates
of motion are very different. Initially, the system moves rap-
idly through a variety of transient states. Eventually it settles
down into longer lived, metastable states, and experiences
only occasional transitions between them. But are the mag-
nitudes the same? Does the protein experience the same
overall range of motion in both phases?

At present, the only answer we can give is to compare
the simulated fluctuations to experiment. It will be seen that
in many cases, they agree reasonably well. We therefore of-
fer a tentative ‘‘yes’’ to the above questions, at least for the
most stable parts of the protein. Ultimately, the only way to
obtain a definite answer will be to perform much longer
simulations, hundreds of nanoseconds or more, and find out.
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FIG. 4. Simulation trajectories, plotted in the plane of the first two principle
components. (a) The crystal simulation. (b) One of the four solution simu-
lations.

C. Principle component analysis

Still another method for studying the behavior of a simu-
lation is principle component analysis.”’~>° This involves di-
agonalizing the variance-covariance matrix for atomic dis-
placements calculated over a given simulation. The
eigenvectors are known as principle components, and repre-
sent coordinated motions of the entire system. The corre-
sponding eigenvalues indicate how much each principle
component contributes to the total mean square fluctuations
of the entire system. It often is found that only the first few
principle components account for the majority of the atomic
fluctuations.” These components then define an “‘essential
subspace,”” in which most of the important motions occur.

We have performed a principle component analysis of
each of the five simulations. Figure 4(a) shows the trajectory
of the crystal simulation, plotted in the plane defined by the
first two principle components. Figure 4(b) is a similar plot
for one of the solution simulations. (Only one solution simu-
lation is displayed, since all four exhibit similar behavior.)
The first two principle components account for 52% of the
total mean-square fluctuations in the case of the crystal simu-
lation, and 64% in the case of the solution simulation.

The transient and metastable states discussed above now
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show up as a ‘“‘chain of beads.”” The spatial extent of each
state is clearly visible, as are the transition paths linking
them together.

The difference between the two plots is quite striking.
They both show the chain of beads pattern, but in the crystal
simulation, the beads are much smaller, and there are many
more of them. It appears that crystal contacts significantly
alter the energy landscape in which the protein moves. Meta-
stable states may be thought of as valleys in the energy land-
scape. The crystal contacts create barriers within the valleys,
forcing the protein to find its way through a rougher land-
scape characterized by a larger number of local minima. This
may account for the slower equilibration discussed above.

One might reasonably wonder whether the different be-
havior observed for the crystal simulation could simply re-
flect the greater number of molecules present. After all, a
larger system would be expected to have more local minima,
even if the energy landscape experienced by each molecule
were no different than in solution. This can easily be tested
by performing the principle component analysis on only a
single protein molecule within the unit cell. The results re-
main quite different from the solution simulations (data not
shown). The local minima remain much smaller than in so-
lution, and although there are fewer of them than in Fig. 4(a),
there are still more than in solution. This indicates that crys-
tal contacts really do change the character of the energy land-
scape.

Indeed, the first principle component for the complete
unit cell shows significant displacements for atoms in all four
protein molecules. This indicates that motions of the four
molecules are highly correlated. The dominant motions in
the crystal appear to be collective fluctuations of many pro-
tein molecules, which are likely to be quite different from
those in solution.

D. Solution versus crystal

We now examine the differences between the atomic
fluctuations of a protein in solution and in a crystal. This
issue has important consequences for the interpretation of
crystallographic data, and for the comparison of crystallog-
raphy to other methods, such as NMR and computer simula-
tions, which deal with proteins in solution.

In Fig. 5, we plot the mean C, fluctuations for solution
(thick line) and crystal (dashed line). Over much of the pro-
tein, we see that the two actually agree quite well with each
other. The differences are limited primarily to four regions:
residues 1-3, 9—15, 25-28, and 57-58. All of these are loop
regions which are relatively disordered in the solution simu-
lations. The crystal contacts reduce the fluctuations in these
unstable regions, while having little effect on the rest of the
protein.

As discussed earlier, the fluctuations calculated from so-
lution and crystal differ in two respects. First, crystal con-
tacts inhibit the internal motion of each molecule. Second, a
molecule in a crystal experiences a small amount of global
motion (translations of and rotations about the center of
mass). This motion is present in experimental data, and can-
not easily be separated from the more interesting internal
motions.
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FIG. 5. Mean C, fluctuations calculated from the solution simulations
(thick line), crystal simulation (dashed line), and crystal simulation with the
global motion of each molecule removed (thin line). The difference between
the thin and dashed lines indicates the magnitude of global motion within
the crystal. The difference between the thick and thin lines indicates the
effect of crystal contacts.

We can distinguish these two effects by removing all
global motion present in our crystal simulation. We do this
by rotating and translating each molecule to minimize its rms
C,, deviation from its starting conformation. We then calcu-
late rms fluctuations for each molecule, and as before, aver-
age the four curves. The result is shown as the thin line in
Fig. 5.

The difference between the thin and dashed lines indi-
cates the magnitude of global motion within the crystal. It
has an rms of 0.17 A, and is relatively uniform throughout
the protein. For no residue is it more than 0.32 A. To a first
approximation, global motion seems to do little more than
add a constant to the fluctuations everywhere. Of course, the
size of this contribution might change if we increased the
length of the simulation. NMR measurements on BPTI in
solution have yielded global rotational correlation times in
the range of 2-8 ns.”> The numbers will undoubtedly be
different for motion in crystal; however, if we take this as a
rough estimate of the time scale on which global motions
occur, it seems likely that 4 ns is not sufficient to fully ex-
plore the range of global motion accessible to the protein.

The difference between the thick and thin lines indicates
the effect of crystal contacts. This is a much larger contribu-
tion than global motion, with an rms of 0.35 A. It also varies
considerably between residues, being essentially zero for
some residues, and as large as 1 A for others. Once again, we
note that crystal contacts have the largest effect on the highly
mobile loop regions, whose motion is significantly reduced
in the crystal, as shown in Fig. 6.

It is especially worth noting that part of the principle
binding loop has significantly reduced flexibility in crystal
compared to solution. It is not surprising that this region
should be highly flexible, given its ability to bind to a variety
of substrates. Indeed, in the absence of any other information
about protein function, this loop’s flexibility in solution
would be an important clue to its functional role. On the
other hand, if one were relying on crystallography to deter-
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FIG. 6. A unit cell of BPTI. Residues are shaded according to how much
their fluctuations are reduced by crystal contacts (the difference between the
thick and thin lines in Fig. 5). Differences of more than 0.6 A are indicated
by black. Gray is used to indicate differences of between 0.3 and 0.6 A, and
white for differences of less than 0.3 A.

mine flexibility, this clue would be completely missed. Nei-
ther the simulated nor experimental data show any unusual
amount of motion for this loop in crystal.

We also note that the long duration of the simulations is
critical for observing this effect. Earlier studies which tried
to calculate the effect of crystal contacts based on much
shorter simulations found little difference between protein
flexibility in solution and in crystal.®

Another interesting difference between the protein’s be-
havior in the solution and crystal simulations becomes appar-
ent when one calculates the radius of gyration, as shown in
Fig. 7. In solution, r, decreases by approximately 0.2 A,
while in the crystal it increases by about the same amount.
These changes are small, but they are consistent enough
from one molecule to another to indicate that this is a real
effect.

The fact that r, expands in the crystal presumably rep-
resents inaccuracies in the model or the potential function;
the starting structure is derived from a crystal, and ideally the
simulation should reproduce it. Small deviations like this are
to be expected, given the approximate nature of the computer
model. On the other hand, the difference in behavior between
the crystal and solution simulations is significant. The same
potential function is used in both cases, so any differences
reflect actual effects of the protein environment.

One possibility is that the change in r, merely reflects a
slight pressure difference between the two models. However,
we would expect the pressure to be higher in the crystal, due
to the smaller available volume per molecule, and hence for
the radius of gyration to be smaller. In fact, we see the exact
opposite. On the other hand, because we use only a limited
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FIG. 7. Radius of gyration as a function of time, averaged over the four
molecules. The data is from the crystal simulation (upper curve) and the
solution simulations (lower curve). Both sets of data can be reasonably fit by
exponentials with time constants of 1.14 ns (crystal) and 1.34 ns (solution).

shell of waters to hydrate the protein molecules, it is con-
ceivable that surface tension in the solution simulations
causes the pressure to actually be higher than in the crystal
simulation.

Another possible explanation is that this is due to the
hydrophobic effect. The protein contracts slightly in solution,
so as to minimize its nonpolar surface area. Conversely, the
protein in crystal expands slightly, due to a hydrophobic at-
traction between adjacent molecules.

E. B-factors versus multiple copy refinement

Figure 8 shows the rms C, fluctuations calculated from
the crystal simulation, along with those obtained experimen-
tally by both methods of analysis, isotropic B-factors and
constrained multiple copy refinement. It is apparent from vi-
sual inspection that all three methods have a reasonable

1.8 T T T .
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Y
o
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FIG. 8. C, fluctuations calculated from the crystal simulation (thin line),
and from analysis of crystallographic data by single copy refinement with
isotropic B-factors (dashed line) and constrained multiple copy refinement
(thick line).
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TABLE I. The root mean square deviations between the atomic fluctuations
calculated from the crystal simulation, single copy refinement with isotropic
B-factors, and constrained multiple copy refinement (CMCR). The columns
show the results when the calculation is based on all @-carbons, only the
a-carbons in the core of the protein (residues 20-56), all heavy atoms, and
heavy atoms in the core of the protein. These numbers give the deviations
between the various curves shown in Figs. 8 and 9, not to be confused with
the rmsd between pairs of protein structures.

Core

Heavy heavy

all C,, core C, atoms atoms

B-factor vs 0.17 0.14 0.24 0.21
simulation

CMCR vs 0.19 0.11 0.28 0.26
simulation

B-factor vs 0.15 0.09 0.17 0.16

CMCR

agreement with each other. They all show fluctuations of
about the same magnitude, and there are significant correla-
tions between the different curves.

We can make these observations more quantitative by
calculating the root mean square deviations betweeen the
various curves. These are shown in Table 1. Overall, the
B-factors give a better fit to the simulation data than does
multiple copy refinement. On the other hand, the agreement
between the two methods of crystallographic data analysis is
significantly better than the agreement of either one with the
simulation data. This suggests that uncertainties in the simu-
lation data are the single largest source of error. It is prob-
ably more meaningful, therefore, if we restrict our analysis to
the core of the protein, residues 20—56, in which the simu-
lation seems to be more fully converged. In this region, the
agreement between all of the curves is significantly im-
proved. Furthermore, the simulation data now comes closer
to multiple copy refinement than to the B-factors, with a
deviation of only 0.11 A.

This still does not tell us what we really want to know.
We would like to answer the question, how much of an error
do we make by using isotropic B-factors as a measure of
atomic motion? In the case of the a carbons, the answer
appears to be, very little. This is not surprising. Motion of
the backbone tends to be highly constrained. Modeling this
motion with an isotropic Gaussian is probably a reasonable
approximation.

For flexible side chains, the answer is very different.
Figures 9(a)—9(c) show the fluctuations for all heavy atoms,
derived from the experimental data by both methods of
analysis, along with the corresponding values from the crys-
tal simulation. In Fig. 9(a), we see that for the most part, the
two refinement methods agree with each other quite well,
rarely differing by more than 0.2 A. On the other hand, when
they do differ significantly, it is invariably the multiple copy
refinement which gives larger fluctuations. In some cases
they are dramatically larger, all the way to 3.56 A for the N ¢
of Lys46. There are a total of 25 atoms with fluctuations
larger than 1.38 A, the largest value obtained for any atom
using isotropic B-factors. For these highly mobile atoms, the
assumption of isotropic Gaussian fluctuations breaks down,
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FIG. 9. Atomic fluctuations for all heavy atoms, calculated from the crystal
simulation, B-factors, and multiple copy refinement. (a) Multiple copy re-
finement (solid line) and B-factors (dotted line). (b) B-factors (solid line)
and simulation (dotted line). (c) Multiple copy refinement (solid line) and
simulation (dotted line).

leading the B-factors to underestimate the degree of atomic
motion.

Interestingly, very few of these large fluctuations show
up in the simulation data. In fact, when we consider all heavy
atoms, the simulation gives a significantly better fit to
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B-factors than to the multiple copy refinement, even if we
restrict ourselves to the core residues.™

It is possible that this reflects a previously undiscovered
problem with the multiple copy refinement method. A much
more likely explanation, however, is that we are simply run-
ning into the time scale problem again. We previously posed
the question of whether a simulation, spanning only a few
nanoseconds, can explore the full range of motion of the
native protein. For the most stable regions, the answer ap-
pears to be yes. It is hardly surprising if the answer is differ-
ent for the flexible regions. The evidence suggests that 4 ns
simply is not enough time for the long, highly exposed
sidechains to fully explore their available range of motion.
Consequently, the simulation sees only small fluctuations for
these atoms, ones which are similar in magnitude to those
obtained from isotropic B-factors.

It is also possible that some of the discrepancy between
the simulation and crystallography results is due to the pres-
ence of static disorder in the crystal. It is likely that some of
the disorder observed in crystallographic data comes from
crystalline defects which do not change with time. A simu-
lation which incorporates only a single unit cell obviously
does not include this static disorder, so it is reasonable to
expect some of the fluctuations to be smaller.

lll. CONCLUSIONS

We have performed 4 ns simulations of BPTI both in
crystal form and in solution. We have calculated atomic fluc-
tuations from both sets of simulations, as well as those ob-
tained experimentally by x-ray crystallography at room tem-
perature using two different analysis methods: single copy
refinement with isotropic B-factors, and constrained multiple
copy refinement. By comparing these data sets, we have at-
tempted to answer several questions about the nature of
atomic fluctuations, and the various methods used to study
them.

We find that crystal contacts have a significant effect on
atomic motion. Fluctuations tend to be significantly larger in
solution than in the crystal, sometimes by as much as 1 A.
The effect is most pronounced in the flexible loop regions,
which are relatively disordered in the solution simulations. In
contrast, the stable core regions of the protein are only
slightly affected by crystal contacts.

The result is that the spectrum of fluctuations is consid-
erably flatter in the crystal, without the large variations that
are seen in solution. Attempting to determine a protein’s in-
herent flexibility from its fluctuations in a crystal may there-
fore be deceptive. This is potentially a serious problem, since
variations in flexibility are an important piece of information
for relating structure to function.

Global motion correction is a less important factor. Glo-
bal motion within the crystal increases the atomic fluctua-
tions for all residues by roughly 0.1-0.2 A, with little varia-
tion between different regions of the protein.

The use of B-factors to infer atomic fluctuations is a
reasonable approximation for backbone atoms, especially in
the most stable regions of the protein. For flexible
sidechains, however, it can significantly underestimate the
degree of motion, sometimes by several angstroms. We be-
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lieve that constrained multiple copy refinement provides a
more realistic assessment of the fluctuations of these highly
mobile parts of the protein.

Finally, the gap in time scale between simulation and
experiment must always be kept in mind. Early in a simula-
tion, the protein is quite mobile and moves rapidly through a
variety of transient states. One should not assume, however,
that this is typical behavior. It may be only an artifact of the
starting conformation. Within a few nanoseconds, it begins
to settle into metastable states and remain in them for ex-
tended periods.

There is no guarantee that fluctuations calculated from
the early, unstable phase of the simulation will agree with the
true equilibrium ones. This is a question which can only be
settled by performing much longer simulations. Based on the
comparison with experimental data, it appears that the agree-
ment is reasonably good for the most stable parts of the
protein. For the less stable regions, however, a short simula-
tion is able to explore only a small part of the full range of
motion accessible to the protein.

IV. METHODS

We have performed five simulations of bovine pancre-
atic trypsin inhibitor: one of a crystallographic unit cell con-
taining four protein molecules, and four of a single protein
molecule in solution. The Amber/OPLS potential
function®*? was used. A small van der Waals term (o
=1.0 A, €=0.01 kcal/mol) was added to all hydrogen atoms
to avoid a catastrophic divergence in energy whenever a hy-
drogen comes too close to any other charged atom. The tem-
perature was set at 292 K.

Noncovalent interactions were cut off at 11 A by means
of a shifting function.*® For future work, we plan replace the
cutoff with a more accurate method for calculating long
range interactions, such as the particle mesh Ewald
method.'* This should help the system to stay closer to the
crystal structure, although the precise amount of improve-
ment reported with this method has varied widely.'*** We do
not expect it to qualitatively change any of our conclusions,
however.

As a starting point, we used the 1BPI crystal structure
from the Protein Data Bank,'® including the 167 crystallo-
graphic water molecules. Six chloride ions were added to
make the system electrically neutral. This number of water
molecules corresponds to a water to protein mass ratio of
0.46. It is well known experimentally that most proteins are
fully hydrated at a mass ratio of approximately 0.38.% Add-
ing water beyond this point merely dilutes the protein with-
out changing it in any way. Computer simulations by Stein-
bach and Brooks®® showed similar results: adding water
beyond this point did not cause any change in a variety of
quantities, such as the deviation from the crystal structure
and the rate of dihedral transitions. We therefore expect the
system to be well hydrated. The use of a limited hydration
shell, such as this one, has recently gained popularity as a
computationally efficient way to model proteins in
solution.¥’?

For the solution simulations, a weak constraining poten-
tial was added to prevent water molecules from evaporating:
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Foon=0 (r<20 A)
=—k(r—=20 A) (r>20 A), (1)

where r is the distance of each atom from the origin, and
where the force constant k was set at 0.1 kcal/mol A2,

For the crystal simulation, three additional copies of the
system were created according to the crystallographic sym-
metry group, yielding a total of four protein molecules, 668
water molecules, and 24 ions. Periodic boundary conditions
were applied with the unit cell dimensions given in the PDB
file, and the entire system was energy minimized.

The multiple time step Langevin dynamics algorithm is
built on the Langevin equation:

MX=— yMX+F(X)+B, )

where X is a 3N dimensional vector containing the coordi-
nates of the atoms, M is the diagonal mass matrix, 7 is a
friction coefficient, F=—VE, where E is the potential en-
ergy of the system, and B is an uncorrelated random force
with zero mean and magnitude given by

where kp is Boltzmann’s constant, T is the temperature, and
At is the time step used in the simulation. The friction con-
stant 7 may be viewed as a parameter which determines how
strongly the system is coupled to an external heat reservoir.

If the system is very heavily damped, the term involving
X may be omitted altogether. This yields the diffusive, or
overdamped, form of the Langevin equation:

7MX=F(X)+B. (4)

We can eliminate 7 from this equation by rescaling the
units of time, so that = 1. Time is then measured in units of
a characteristic time 7. In the limit of sufficiently small
timestep, both Egs. (2) and (4) can be shown to produce a
canonical probability distribution.***!

In our earlier work, we used Eq. (4) for both the long,
highly constrained steps, and the shorter, unconstrained ones.
In principle, this yields a savings in CPU time of nearly a
factor of 100. In practice, however, we find that this is an
inefficient way of simulating a protein. The problem is this:
real proteins are not highly damped on the time scale of
individual MD steps. Thus, by explicitly overdamping every
mode of the protein, we severely impair its ability to explore
conformation space.

This can be understood by considering the simple case
of a random walk in one dimension. If every step has length
L, and is uncorrelated with the previous step, then the mean
distance traveled in N steps is L\N. Suppose, however, that
the steps are correlated: that the system always takes M steps
in a row in the same direction, before randomly chosing a
new direction. In this case, the mean distance traveled in N
steps is L JMN. For large M, this leads to a much more rapid
exploration of configuration space.

In the case of a protein, there are modes which remain
correlated over hundreds of MD steps. Furthermore, these
modes are generally the ones which contribute most to large
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scale conformational changes. Eliminating their correlations
from one step to the next will dramatically slow down the
exploration of configuration space.

In our current work, we solve this problem by using the
full Langevin Eq. (2) for the long, highly constrained steps.
We still use Eq. (4) for the shorter steps, since bond length
and angle oscillations have short correlation times, and con-
tribute little to the large scale conformational changes.

Each iteration of the multiple time step Langevin dy-
namics algorithm consists of three time steps:

(1) A ““long” step, using the full Langevin Eq. (2), with all
bond lengths and angles constrained, and a time step of
10 fs.

(2) A ““medium’’ step, using the diffusive Langevin Eq. (4),
with bond lengths but not angles constrained, and a time
step of 2.5X 10~ 7.

(3) A “‘short” step using Eq. (4), with no constraints, and a
time step of 5X 10 °7,.

The long steps are calculated using a leapfrog style Ver-
let integrator. The short and medium steps are calculated
with a simple first order Euler integrator.*?

The CPU time required is further reduced by dividing
the nonbonded interactions into ‘‘strong’” and ‘‘weak’’ com-
ponents. The strong part, consisting of interactions between
atoms closer than 4.5 A, is recalculated for every time step,
while the remaining interactions are recalculated only once
per iteration.

All of the simulations were 4 X 107 iterations in length,
or 4 ns if we assume that each iteration corresponds to 10 fs.
(The true figure is slightly longer than this, since some mo-
tion of the slow degrees of freedom also occurs in the short
and medium steps.) Structures were saved after every 100
iterations. For purposes of analysis, we treat the first 100 ps
of each simulation as an equilibration period, and calculate
all averages based on the remaining 3.9 ns.

It is not immediately obvious what value should be used
for the damping constant in the long steps. As noted above,
damping the system too heavily reduces its ability to explore
conformation space. The slowest underdamped modes in
proteins are known to have a period of approximately 1 ps,**
so the damping constant must be small enough to avoid ex-
cessive damping on this time scale. Furthermore, the system
is already weakly coupled to the Langevin heat reservoir by
the short and medium steps. In these simulations, we set 7
=1 ps~!, but a different value might ultimately be found to
give better results.

The LINCS algorithm*® was used for implementing the
constraints. LU decomposition of the constraint matrices was
done with the Sparse 1.3a package.**

Some difficulties were encountered constraining bond
lengths and angles together. The problem is that, wherever
four atoms are constrained to lie in a plane, the constraint
matrix is ill conditioned. This results in very large constraint
forces which are delicately balanced to cancel each other out.
The problem is helped, but not eliminated, by attaching a
dummy atom to each planar group.®

For the current work, we used the following inelegant
but effective solution. We monitored the constraint forces in
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each long step. If any one of them was larger than a cutoff
value (set at 10* kcal/mol A), we canceled that step, and
performed an extra pair of short and medium steps to let the
planar atoms move slightly out of alignment. For our future
work, we hope to find a better method of implementing the
constraints which avoids this problem altogether.

The presence of explicit water molecules creates some
special difficulties which must be dealt with. Water libra-
tional motion has a period of approximately 42 fs.”* To in-
tegrate this accurately, we therefore need a maximum time
step of no more than about 5 fs.

This problem can be addressed by increasing the hydro-
gen mass used in the simulation, so as to slow down the
water librations. A time step as large as 10 fs then becomes
possible, allowing much more efficient exploration of con-
figuration space. We therefore used a hydrogen mass of 5
amu for all of the simulations.

One might reasonably object that this is an unrealistic
change, which will lead to incorrect molecular dynamics.
The effect of such a change was studied by Pomes and
McCammon,46 who simulated a box of water with a hydro-
gen mass of 10 amu. They found that free energies and radial
distribution functions were completely unaffected, but trans-
lational diffusion rates were reduced by 28%. We expect the
corresponding rate changes for the water molecules in our
simulations to be smaller than this, since we use a hydrogen
mass only half as large. Any effect on the protein should be
smaller still, since explicit hydrogens constitute only 25% of
the protein atoms in the Amber/OPLS representation, com-
pared to 2/3 of the water atoms. In any case, the quantities of
interest in this work, the magnitudes of equilibrium thermal
fluctuations, do not depend on atomic masses.

Principle component analysis was performed by diago-
nalizing the variance-covariance matrix for atomic displace-
ments of all a-carbons, calculated from the last 3.9 ns of
each simulation.”® Global motion of each molecule was first
removed by applying rotations and translations to minimize
its rms C , displacement from the starting structure. Thus, the
principle components reflect only the internal motion within
each molecule.

We obtained the room temperature crystallographic dif-
fraction data which was used to generate the 4PTI crystal
structure.!” We then reanalyzed it using the constrained mul-
tiple copy refinement method with an ensemble of ten
structures,'? shown in Fig. 1. Only a single copy of the water
molecules from the 4PTI file was used in the multiple copy
refinement, and their coordinates were not further refined.
For comparison, we also calculated atomic fluctuations from
the B-factors given in the 4PTI pdb file according to’

((Ar)*)"2=(3B/87*)"">. (5)

We chose this data set, rather than the data set used to gen-
erate the 1BPI crystal structure, since the latter was collected
at 125 K, in contrast to the simulations which were per-
formed at room temperature.
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