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We describe a technique for generating potentials of mean force !PMF" between solutes in an
aqueous solution. We first generate solute–solvent correlation functions !CF" using Monte Carlo
!MC" simulations in which we place a single atom solute in a periodic boundary box containing a
few hundred water molecules. We then make use of the Kirkwood superposition approximation,
where the 3-body correlation function is approximated as the product of 2-body CFs, to describe the
mean water density around two solutes. Computing the force generated on the solutes by this
average water density allows us to compute potentials of mean force between the two solutes. For
charged solutes an additional approximation involving dielectric screening is made, by setting the
dielectric constant of water to #!80. These potentials account, in an approximate manner, for the
average effect of water on the atoms. Following the work of Pettitt and Karplus $Chem. Phys. Lett.
121, 194 !1985"%, we approximate the n-body potential of mean force as a sum of the pairwise
potentials of mean force. This allows us to run simulations of biomolecules without introducing
explicit water, hence gaining several orders of magnitude in efficiency with respect to standard
molecular dynamics techniques. We demonstrate the validity of this technique by first comparing
the PMFs for methane–methane and sodium–chloride generated with this procedure, with those
calculated with a standard Monte Carlo simulation with explicit water. We then compare the results
of the free energy profiles between the equilibria of alanine dipeptide generated by the two methods.
© 1996 American Institute of Physics. $S0021-9606!96"50321-1%

I. INTRODUCTION

The importance of including explicit water molecules in
biomolecular simulations is by now well established.1,2 Wa-
ter is essential in creating what is known as the hydrophobic
effect: the tendency of hydrophobic groups to cluster to-
gether thus minimizing their solvent accessible surface.3–5
Furthermore water molecules are often involved in the bridg-
ing of hydrogen bonds between the solute’s hydrogen bond
donors and acceptors.6 Finally the dielectric properties of
water dramatically reduce the strength of intra and inter-
molecular electrostatic interactions.7–10

However to fully solvate a biomolecule in a simulation
with periodic boundary conditions often requires including
many more water molecules than solute atoms. Hence the
simulation tends to run much more slowly than a vacuum
simulation of the same molecule. It would therefore be very
useful, in order to exhaustively sample the conformational
space of biomolecules, to develop a technique that implicitly
accounts for the effect of water, without the inclusion of
explicit water molecules in the simulation. In order to be
successful, such an approach should be capable of reproduc-
ing the effects of solvation that we have outlined above.

Several techniques have already been developed to allow
the exclusion of explicit water molecules in simulations. One
of the simplest methods to account for the effect of water on

intra-solute electrostatic interactions is to introduce screen-
ing functions. A common technique that accounts for the
effect of water polarization on electrostatic interactions is to
include a distance dependent dielectric constant.11 Alter-
nately, one could simply set the dielectric constant to 80, the
value for bulk water.

Similar ad hoc methods have also been devised to ac-
count for the effect of water on van der Waals interactions.
When two solute atoms move apart, the intramolecular van
der Waals contacts are replaced with solute–solvent con-
tacts. The repulsive component of the solute-solute interac-
tion is unaffected by the presence of water. To account for
this behavior, one technique used is to truncate the van der
Waals potential at its minimum energy position, and shift it
up to zero.12 Thus one is in effect computing the energy with
respect to the solvated state. In a similar approach, sigmoidal
potentials have been used to account for the effect of solva-
tion on van der Waals interactions.13

Another technique that is widely used to approximate the
effects of an aqueous solvent on a solute, is to model the
solvation energy as a term proportional to the solvent ex-
posed surface area of the solute. In one such formulation,14
each atom is assigned a solvation parameter so that the total
solvation energy is simply the sum of the products between
the atomic solvation parameters and the exposed surface area
of the atom in question:

8639J. Chem. Phys. 104 (21), 1 June 1996 0021-9606/96/104(21)/8639/10/$10.00 © 1996 American Institute of Physics

Downloaded¬08¬Sep¬2005¬to¬164.67.12.71.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



&G! '
atom i

&( iAi . !1"

A similar technique is Scheraga’s hydration shell model,15 in
which each atom in a solute interacts with the volume of
water formed by its surrounding shell minus the excluded
volume of other solute atoms. These techniques have been
shown to adequately reproduce the solvation energy of vari-
ous conformers of small biomolecules.15,16 However, they do
not account for the screening effects of water on intra-solute
electrostatic interactions, which must be treated separately
when using these approaches.

A more accurate approach to the dielectric screening
problem is to treat the water as a continuum with a dielectric
of 80, in which is embedded a solute. In this approach, the
van der Waals forces are included in the cavitation energy:
the free energy required to form a cavity, with the shape of
the solute, in water. Once the cavity is formed, it is possible
to solve the Poisson–Boltzmann equation to obtain the
charge buildup at the water–solute interface.17 Once the
charge distribution is known, one can deduce the contribu-
tion of the electrostatic forces to the free energy of solvation,
as well as the screening effects of these charges on intramo-
lecular electrostatic interactions. Another way to estimate the
screening effect of water on these interactions is to use a
technique developed by Warshel, in which the water dipoles
are fixed on lattice points around the solute, and their orien-
tation is self-consistently solved for.18

Yet another set of techniques used to approximate sol-
vation, are those that utilize analytic equations to solve for
the potential of mean force !PMF" between two solutes.
These analytic equations, referred to as RISM type
equations,19 express the 2-body correlation functions !CF" as
an integral over 3-body CFs. To solve them one may resort
to an approximation, such as that provided by the hypernet-
ted chain equation, to express 3-body CFs in terms of 2-body
ones. The interatomic potentials of mean force can then be
summed over all the solute atoms to obtain an approximate
value of the solute free energy.20

Given the vast literature on approximate solutions to the
solvation of biomolecules, is there a need for another tech-
nique? The first approach outlined above, that empirically
screens electrostatic and van der Waals interactions, provides
only a qualitative approximation to the effects of water on a
solute. It is not possible to quantitatively estimate solvation
free energies or interatomic potentials of mean force using
such an approximation. The effects of the solvent are far
more accurately determined by models that relate the solva-
tion energy to the solvent exposed surface of the solute, al-
though these methods require a further assumption to model
the screening effects of water on intra-solute electrostatic
interactions. The solution of the Poisson–Boltzmann equa-
tion has also been shown to satisfactorily reproduce the sol-
vation energies of small biomolecules. However, these last
two approaches are computationally expensive. Both the cal-
culation of surface area, using the algorithm of Lee and
Richards,21 and the solution of the Poisson–Boltzmann equa-
tion, using an iterative procedure, require substantially more

calculations than merely calculating pairwise interactions.
We therefore feel that to be able to explore the conforma-
tional landscape of even small biomolecules, these ap-
proaches present limited capabilities.

The approach we propose in this work is similar to that
described above using RISM equations, where the effect of
water is incorporated in pairwise potentials of mean force.
The difference lies in the method used for computing the
PMFs, which we will outline below. There are two funda-
mental approximations that one must make when using this
approach. The first approximations have to do with the pro-
cedure that one uses to calculate the PMFs without having to
run a full simulation with explicit water. The second, and
probably more important, is related to the fact that we only
use pairwise interactions, and not higher order ones !3-body,
4-body etc.", to describe the n-body potential of mean force
of the solute, where n is the number of solute atoms. The
2-body potentials treat any pair of solutes as being com-
pletely surrounded by water. In a molecule with more than
two atoms this will not be the case, only a fraction of the
surface area of any pair of atoms will be solvent accessible.
Higher order terms in the expansion account for this partial
solvation. In this paper we will show that for a small solute,
the alanine dipeptide, we obtain reasonable free energies by
only considering the 2-body terms. We conclude, therefore,
that for small molecules, where a large portion of the surface
area is exposed to the solvent, both these approximations
yield reasonable results.

Why don’t we use the solution of RISM equations to
compute intra-solute PMFs? One reason is that when com-
pared to the results of molecular dynamics simulations, the
solution to RISM equations may not be very accurate. For
instance, it has been shown that the maximum of the corre-
lation function between sodium and chlorine, in an aqueous
solution, is off by 50% in a RISM calculation with respect to
the molecular dynamics simulation.22 In contrast to the
RISM approach, we compute the solute–solvent correlation
functions explicitly from full atom simulations. We will
therefore attempt to demonstrate that the procedure described
in this paper is both conceptually simpler and more accurate
than the RISM approach, especially when applied to small
biomolecules such as the alanine dipeptide.

The techniques presented in this work emerge from our
previous approach to compute the average water density
around biomolecules. We have recently shown23 !following
the work of A. Garcı́a, G. Hummer and D. Soumpasis on the
hydration of biomolecules24,25", that it is possible to compute
the mean density of water about a solute by using a potential
of mean force expansion. We have further demonstrated that
this water density correctly reproduces the free energy land-
scape of various solvated molecules. In this work we use the
Kirkwood superposition approximation, to express the mean
density of water at position r , with respect to solute atoms
r1 . . . . .rn , as a product of the 2-body correlation functions,

)!r!r1 . . . .rn"!)0*
i!1

n

g !2 "!r ,ri". !2"
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Unlike our previous work, we neglect the contributions to
the density from higher order !3-body, 4-body etc." correla-
tion functions.

This level of accuracy is sufficient for estimating the
mean van der Waals force that the water exerts on the sol-
utes, since these forces are short ranged, decaying as r"6 in
the description used here. However it is not sufficiently ac-
curate to describe the mean coulombic force that the water
exerts on the solutes. To model this effect we introduce a
dielectric constant of 80 in the Coulomb term of our poten-
tial.

The procedure we adopt to compute PMFs involves the
following cycle: we first estimate the free energy to dis-
charge our solutes, we then compute the potential of mean
force required to move the uncharged solutes apart, and fi-
nally we estimate the free energy to recharge our solutes.

To compute the PMF for uncharged solutes we first gen-
erate the solute–solvent 2-body correlation functions be-
tween the atoms of interest and water oxygens. This is ac-
complished using a standard Monte Carlo simulation with
explicit water molecules. It is a relatively efficient procedure
requiring only a few hours per correlation function. Armed
with the CFs we are able to approximate the water density
around the solutes as a function of their separation, as shown
above. From the average water density we are able to com-
pute the mean force on the two solutes, and hence the poten-
tial of mean force.

Using the approximation that the water acts as a homo-
geneous dielectric with dielectric constant 80, we easily cal-
culate the free energy to discharge and recharge our solutes.
Combining these two terms, we then generate symmetric,
pairwise potentials of mean force for all the atom species of
our solute. Following the work of Pettitt and Karplus,1 we
express the n-body potential of mean force for our solute as
a sum of these pairwise potentials:

W !n "!r"!'
i j

Wi j
!2 "!ri ,r j". !3"

To demonstrate the usefulness of this technique, we
show that it successfully reproduces the PMF between meth-
anes and sodium-chloride as ions as well as the free energy
profiles generated by rotating the alanine dipeptide about its
dihedral angles.

II. THEORY
A. Correlation functions and Kirkwood approximation

For a single atom solute in an infinitely dilute solution
we can describe the average solvent density around the
solute in terms of the 2-body correlation function !CF",
g (2)(r). This is a spherically symmetric function that de-
pends only on the radial distance between the solute and the
solvent. In the case of an aqueous solution, one would have
to compute two separate CFs for the water oxygens and hy-
drogens, gO

(2)(r) and gH
(2)(r).

In Fig. 1 we show a typical CF for water around a
Lennard-Jones particle. We see that both the oxygen and
hydrogen CFs have a first hydration shell at 4 Å and a sec-

ond one at 7 Å from the solute. Beyond that the density of
water rapidly approaches its bulk density, which implies a
value of the CF of 1. Since the solute in this case is not
charged the hydrogens and oxygens of water do not prefer-
entially align themselves so that both the peaks lie at the
same distance.

If instead of a single solute we have two solute atoms,
we may wish to describe the water density around the solutes
when they are separated by a distance, r0 . In this case we
would need a 3-body correlation function, g (3)(r0 ,r1 ,r2),
where r1 and r2 are the distances between a solvent molecule
and solutes 1 and 2, respectively. In principle one can com-
pute these functions numerically by running a Monte Carlo
!MC" or molecular dynamics !MD" simulations in which one
places the two solutes in a boundary box with water
molecules.26 However such a simulation is computationally
intensive, requiring approximately a day on a typical work-
station. Since for our purposes we need to calculate hundreds
of these functions, we must use an approximate technique
rather than the full simulation.

The simplest method for approximating 3-point CFs is
known as the Kirkwood approximation:27

g !3 "!r0 ,r1 ,r2"!g !2 "! !r0"r1!"g !2 "! !r0"r2". !4"

In other words, we treat the 3-body CF as a product of the
2-body CFs. This is not a very accurate approximation, and
as a consequence various methods have been designed to
attempt to improve it, although with only limited
success.28–30 In particular, it tends to exaggerate the density
of the solvent in the areas where the two solutes have over-
lapping peaks of their CFs. However, as we have shown in
previous work,23 in the case of uncharged Lennard-Jones
particles we are still able to correctly calculate PMFs. This is
probably due to the fact that van der Waals interactions are
short ranged, decaying as r"6. Therefore, even though the

FIG. 1. 2-point correlation function between a united-atom methane and
water oxygens !solid" and hydrogens !dashed" obtained from MC simula-
tions.
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Kirkwood approximation does not work globally, the regions
of water density that interact strongly with the solutes are
sufficiently well described.

Coulomb interactions, however, decay as r"1 and are
therefore much more sensitive to errors made by the Kirk-
wood approximation. Therefore our procedure will not work
well for charged particles. Motivated by the need for a com-
putationally efficient algorithm, we propose an approximate
method to remedy this in the next sections, by presenting a
procedure for calculating the PMFs of charged atoms. Before
this, in the next section, we will elaborate on the method by
which the Kirkwood approximation may be used to obtain
potentials of mean force between two Lennard-Jones par-
ticles.

B. Inter-solute mean force

To calculate the free energy change to move two solutes
separated by a distance r , to r#&r , we compute the mean
force on the solutes due to the average water density. The
change in free energy may be written as

&A!A!r#&r ""A!r "!"+"1,Fax!r "-r&r . !5"

Here , - defines an equilibrium average over all solvent de-
grees of freedom with the distance between the solutes con-
strained. Fax is the component of the inter-solute force along
the axis connecting the two solutes. All other components of
the force average to zero.

To apply this formula we calculate the water shell
around the solutes using the above Kirkwood approximation.
Since the water density is cylindrically symmetric, we need
only calculate it on a plane that intersects the axis of sym-
metry !defined by the two solutes". On this plane we con-
struct a cubic grid with 0.1 Å spacings extending 9.0 Å from
the solute and compute the density of water oxygens and
hydrogens at each grid point.

The water density computed in this fashion represents an
average water distribution. Therefore we automatically com-
pute the total average force, ,Fax- , by computing the force
between each solute and the mean water distribution and
between the solutes.

We can therefore immediately calculate the free energy
change in two simple steps: !a" first we compute the density
of water oxygens and hydrogens on the grid mentioned
above, when the solutes are at a distance r apart, then !b" we
sum the total force between the solutes and the water density

,Fax!rsolutes"-!" '
n!1

2 # 2.) i '
) i ,zi

Fax!rwater

"rsolute"D!) i ,zi"&/ $ %#Fax!rsolutes", !6"

where the first is the sum over the solutes and the second is
the sum over the cylindrical grid coordinates, Fax is the force
in the z direction between the solute and the water or the two
solutes, D is the density of water oxygens and &/ is the area
of our grid spacings.

By integrating the distance between two solutes, in in-
crements of &r , we can then generate the solute-solute po-
tential of mean force:

W !2 "!r "!"&
r0

r
,Fax!r "-dr#constant, !7"

where the constant is chosen so that the potential goes to
zero at infinity. As an example of this technique we show the
PMF between two methanes in Fig. 2. In our previous
work,23 we had computed the same potential without taking
advantage of the cylindrical symmetry of the problem.
Therefore, the potential presented here is in principle more
accurate. The details of this calculation will be explained in
the next section.

III. METHODS
A. Calculation of correlation functions

To compute the correlation functions !CF" we placed our
solute !e.g., united atom methane" in a 18.7 Å box with
periodic boundary conditions. We then solvated it with 217
SPC31 water molecules, representing a density of 1
gm/cm3.

The potential functions and parameters we used were
those developed by Jorgensen and Tirado-Rives, since these
are optimized for liquid simulations !hence known as OPLS
potential functions".32,33 The form of the potential function is

V!r1 , . . . .rn"! '
i , j ,i$ j

# qiq je2ri j
#
Ai j

ri j
12"

Ci j

ri j
6 $ . !8"

FIG. 2. Potential of mean force as a function of distance between two
solvated methanes. The dashed line is from the MD simulation of D. van
Belle. The solid line is computed with the methods of this work, with
slightly higher accuracy than the same curve of Ref. 23. The dotted line is
the potential calculated by the method of Eisenberg and McLachlan where
the solvation energy is proportional to the solvent accessible surface.
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In all cases the CHn groups are treated as united atoms, so
that only one position is used to describe these groups !see
Table I".

As suggested by Levitt,34 the Coulomb component of the
potential is truncated by multiplying it by the function
S(r)!(1"(r/rc))2, with rc!8.0 Å. This function elimi-
nates spurious forces at the cutoff distance since its deriva-
tive also goes to zero there. We have verified that water–
water CFs calculated using S(r) are not significantly
different than those computed using an unscreened Coulomb
potential out to 10 Å, which is set to zero using a switching
function10 beyond that, and that furthermore they reproduce
the experimental !obtained from neutron diffraction" water–
water CFs well.35,36

To select moves !translations and rotations" of molecules
we use the standard Monte Carlo Metropolis algorithm.37
The moves were selected from a flat distribution with ranges
%0.15 Å for translations and %15° for rotations. At the
chosen simulation temperature !100 °C" these moves yield
an acceptance rate of approximately 40%.

B. Potentials of mean force

To compute the potentials of mean force we use the
Kirkwood approximation to estimate the density around the
two solute atoms. We then apply the free energy perturbation
equation, as illustrated above, to estimate the free energy
change to move the solutes apart.

However, as we have explained above, this procedure
works reliably only for uncharged Lennard-Jones particles.
Therefore, to generate PMFs for charged atoms we introduce
a further approximation, the essence of which is summarized
in the thermodynamic cycle of Fig. 3. We begin with the two
charged solutes, separated by a distance r , in water. We
imagine removing the charge from these solutes, while keep-
ing their distance fixed. We then move them apart by a dis-
tance &r , and finally recharge them to their original values.
The free energy to accomplish this cycle is identical to the
free energy necessary to move the two charged particles
apart by a distance &r .

We are able to reliably calculate the free energy entailed
in moving the two uncharged solutes apart. Therefore the
approximation lies in estimating the free energy necessary to
discharge and recharge the solutes. The approximation we

make along these two portions of the free energy cycle is
simply to treat the water as a medium with a dielectric con-
stant of 80. This is, as we stated in the introduction, one of
the simplest approximations one can make to account for the
screening effect of water on electrostatic interactions. Since
we neglect solute–solvent van der Waals interactions when
charging and discharging the solutes, the only contribution of
these two paths to the free energy cycle is accounted for in
the change in solute–solute electrostatic interactions between
r and r#&r , when screened with a dielectric constant 80.

One might expect that the extent of screening of electro-
static interactions by the rearrangement of water dipoles
around the two solutes would depend on the distance be-
tween the solutes. For instance, the dielectric constant of
water has been modeled as a sigmoidal function that goes
from one to 80 in about 10 Å.38 However, as we will show in
the following sections, we find that the correct potentials of
mean force are more faithfully reproduced by setting the di-
electric to 80 for all distances between the solutes. In par-
ticular, distance dependent approximations of the dielectric
tend to overestimate the attraction between oppositely
charged ions, by underestimating the extent of screening.

To summarize, we first compute the correlation func-
tions for all the atoms of interest while setting their charge to
zero. Therefore these particles are only distinguished by their
different van der Waals parameters. We then use the proce-
dure outline in Section II to compute the free energy neces-
sary to move them apart. We then add this component of the
free energy to that obtained by moving the charged atoms
apart, with their electrostatic interactions screened by a di-
electric constant of 80. In the following sections we will
demonstrate that this technique for approximating PMFs,
yields reasonable results when applied to sodium and chlo-
rine ion pairs and the alanine dipeptide.

C. Simulations with explicit water

To determine the accuracy of the potentials of mean
force generated by the above method, we will compare the

TABLE I. OPLS parameters used in simulations.

Atom type Charge qe # (

CH4 0.0 3.73 0.294
C0 0.2 3.8 0.08
C!O" 0.5 3.75 0.105
O!C" "0.5 2.96 0.21
N!H" "0.57 3.25 0.17
H!N"a 0.37 1.0 0.01
C+ 0.0 3.91 0.16
!NH"CH3 0.2 3.8 0.17
Na 1.0 1.8974 1.6071
Cl "1.0 4.4172 0.1178

avan der Waals parameters taken from the Levitt parameter set.
FIG. 3. A schematic of the thermodynamic cycle we use to compute the
potentials of mean force. We begin at the bottom left with our two solutes in
their charged state in water. We then discharge them !top left", move them
apart &r !top right" and then recharge them !bottom right". This sequence is
equivalent, in free energy terms, to separating two charged solutes !bottom
left to bottom right".
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free energy profile of alanine dipeptide computed with PMFs
and with explicit water. Here we will outline the details con-
cerning the simulation with explicit water molecules.

To begin with we must first determine the paths in the
dihedral angle space of alanine dipeptide along which to in-
tegrate. For simplicity, the four minima in 1 ,2 space were
determined using the PMFs, since this is much faster than
determining the real minima of the full simulation with wa-
ter, and for our purposes of comparison equally good. The
1 ,2 energy landscape is illustrated in the contour plot of
Fig. 4. To obtain this plot we first constrained the dihedral
angle using harmonic potentials at 20° intervals and then for
each set of constraints averaged the energy, computed using
PMFs for non-bonded and CHARMM for bonded interac-
tions, for 100 000 steps. In this paper, CHARMM parameters
are exclusively obtained from the tables of the original
CHARMM paper of 198310 and not from the newer versions.
The paths are illustrated in Fig. 5.

The four paths were then divided into 10 segments each,
giving us 40 points in 1 ,2 along which to compute the
change in free energy, &A . In each interval, the dihedral
angles of the alanine dipeptide were constrained with strong
harmonic potentials. The molecule was placed in a 19 Å box,
with periodic boundary conditions, and 210 water SPC water
molecules.

We then conducted a Monte Carlo simulation at the cho-
sen temperature of 100 °C to improve the sampling over a
room temperature simulation. The potential we used was that
listed in the tables of the original CHARMM paper,10 for the
bonded interactions, and the OPLS parameters for the non-

bonded ones.32 Both parameter sets treat carbons with co-
valently bonded hydrogens as united atoms, represented by a
single position. We did not constrain any atomic degrees of
freedom. We first equilibrated the system for one million
steps, and then computed the average free energy,
"+"1 ln,exp$&U(1,2)%-, for an additional four million
steps. The calculation was performed on 40 SGI 4400 ma-
chines, and required approximately two days per machine.

IV. RESULTS
A. Methane–methane potential of mean force

The potential of mean force !PMF" between two meth-
anes has been studied extensively because it is one of the
simplest potentials that describes the hydrophobic effect.26
As expected from previous work39 the water becomes more
ordered around a hydrophobic solute, thus decreasing its en-
tropy. This effect creates an attraction between two meth-
anes, since reducing their surface area in contact with water
minimizes the loss of entropy. Previous studies had also
found that a second minimum in the PMF occurs when the
two methanes are separated by about 7 Å, allowing a single
water molecule to lie between them.

Using the OPLS parameters for a united-atom methane
!see Table I" we first calculate the CFs between methane and
water oxygens or hydrogens !see Fig. 1". We then determine
the PMF by the procedure outlined above.

As was found in Ref. 23, using a slightly less accurate
technique, we again find remarkable agreement between our
PMF and that computed by MD studies,26 as can be seen in
Fig. 2. The position of the minima, at 4 Å and at 7 Å, are
equal to within 0.1 Å in the two curves. The heights of the
first barrier are essentially equal. The two curves only begin
to show some discrepancy in the second minimum, the water
mediated minimum.

FIG. 4. A contour plot of the 1 ,2 space of the alanine dipeptide computed
using the potentials of mean force described in this work. At 400 points in
the 1 ,2 plane we constrained the dihedral potentials using harmonic con-
straints and computed the average energy, computed using the pairwise
PMFs for non-bonded interactions and the potentials from the original
CHARMM Paper !Ref. 10" for the bonded ones, during a 100 000 step
simulation. No explicit water molecules were included in the simulation.
See Ref. 44 for comparison.

FIG. 5. The paths in the 1 ,2 space of the alanine dipeptide along which we
compute the free energy profiles. We also list the names of the conforma-
tions that correspond to the four minima at the end points of the paths.
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In Fig. 2 we have also included a PMF for methane–
methane calculated by the technique mentioned above where
the solvation energy is taken to be proportional to the solvent
accessible area. From the work of Eisenberg and
McLachlan,14 we have taken the atomic solvation parameter
of methane to be 16 cal/mol Å2. We used the program
MidasPlus40 to compute the solvent accessible area using the
algorithm of Lee and Richards,21 with a probe radius of 1.4
Å. The solvation contribution to the free energy was then
added to the bare methane–methane OPLS potential. As is
clear from Fig. 2, this technique is unable to correctly calcu-
late the PMF. In particular, the minimum in the potential is
only 30% of the value computed by MD.

Thus, we conclude that in this very simple case our
methodology is effective in reproducing the results of an
extensive MD simulation. It should also be noted that to
construct our PMF requires only a few seconds, while the
evaluation of PMFs using MD requires approximately three
orders of magnitude longer.

B. Sodium-chloride potential of mean force

Although we have demonstrated that the PMFs we gen-
erate for uncharged particles are accurate, the ones for
charged particles are expected to deviate more from the true
potentials. This is due to the fact that in the thermodynamic
cycle described above, we approximate the free energy con-
tribution from discharging two solutes separated by r and
recharging them at r#&r , to be the energy required to sepa-
rate two solutes whose electrostatic interactions are screened
by a dielectric of 80. To investigate the magnitude of this
error we compare the PMFs for sodium chloride, calculated
by our method and by an explicit water simulation.

The explicit water simulation we used to calculate the
PMF for Na, Cl is very similar to that described above for
the alanine dipeptide. The parameters for sodium and chlo-
rine are listed in Table I. We place the Na, Cl atoms in a
periodic boundary box with 217 water molecules and run the
simulation at a temperature of 100 °C. At each distance we
first equilibrate the system for one million Monte Carlo
moves and then compute "+"1 ln,exp$U(r#&r)"U(r)%-,
for another million steps. We repeat this 25 time with incre-
ments of 0.2 Å as we separate the two atoms.

The results of the explicit water and PMF calculations
are shown in Fig. 6. The first minimum is fairly well repro-
duced, within 0.1 kcal/mol, by our PMF method, however it
is much wider than the minimum computed with explicit
water. The first barrier is also lower, and the second mini-
mum is shifted by 1 Å. We have also included the potential
of mean force calculated with a distance dependent dielec-
tric. This approximation severely exaggerates the attraction
between the two ions, predicting a minimum of "18.0 kcal/
mol. Only the portion of the curve above "2.0 kcal/mol
appears in the figure.

We conclude that even though the above mentioned ap-
proximation reproduces the value of the first minimum in the
PMF accurately, it nonetheless introduces significant error in
the second minimum and the barrier between the two

minima. However, this error is probably maximized in the
PMFs between two ions, such as Na, Cl, since it is due to the
effects of charging and discharging the atoms. In other at-
oms, that are modeled as having only a fractional charge, the
approximation will be less severe. Since in biomolecules
most of the atoms are assigned only a partial charge, we feel
the approximation should be sufficient to yield reasonable
results, a fact that we will verify in the next section.

C. Free energy profiles of alanine dipeptide

The effect of water on the free energy landscape of the
alanine dipeptide has been extensively studied
theoretically.41–44,16,1 Rather than compare our PMFs for
many solute pairs to those generated by simulations with
explicit water, we decided to test whether they reproduced
the free energy profiles derived from rotating the alanine
dipeptide about its dihedral angles. In order to do this we
first generated all the necessary PMFs between the atom
types that compose the alanine dipeptide, according to the
OPLS parametrization. There are seven atom types in all,
requiring the calculation of 21 PMFs. The details of this
calculation are the same as those of the computations out-
lined above.

The OPLS parameters we used for the atoms are listed in
Table I. Instead of the OPLS parameters for the amide hy-
drogen, where the van der Waals parameters are zero, we had
used the parameters from Levitt et al.34 where this is not the
case.

Once we have tabulated all possible PMFs for the ala-
nine dipeptide, we make the approximation that the total po-
tential of mean force for the molecule may simply be ex-
pressed as a sum of these 2-body PMFs $see Eq. !3"%. This is
the lowest order approximation for such an expansion. To

FIG. 6. Potential of mean force as a function of distance between Na and Cl
in water. The dashed line is from the MD simulation of D. van Belle. The
solid line is from this work. We also include a portion of the curve !dash
dot" representing the potential computed with a dielectric constant propor-
tional to the distance (#!r).
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improve the approximation we would add 3-body potentials
to the expansion. However, we will now show that even to
this order, the n-body PMF is reasonably approximated by
the above equation. However, we only expect this agreement
for relatively small solutes where the solvent exposed surface
area is a large component of the total surface area. We would
not, for instance, expect this approach to work for large pep-
tides or proteins, where many of the atoms in the core of the
molecule have no solvent exposed surface area.

We computed the free energy profiles by dissecting the
paths of Fig. 5 into 15 intervals. At each point we ran a room
temperature Monte Carlo simulation for 200 000 steps, and
computed "+"1 ln,exp$&U(1,2)%-, to obtain the change in
free energy. As explained above, we use the parameters from
the original CHARMM paper10 for the bonded interactions
and OPLS parameters for the non-bonded ones.32 Therefore
we use the same parameters to describe all interactions in
both the full water and mean field simulations, allowing us to
make accurate comparisons of the results.

We compare the free energy profiles obtained with the
PMFs and explicit water simulations in Fig. 7. We also show
the free energy profiles for a simulation performed in
vacuum, to show the change in the free energy brought about

by including water in the simulation. To perform the vacuum
simulation, we use the OPLS parameters, with the dielectric
set to 1, for non-bonded interactions, and the parameters
from the original CHARMM paper10 for the bonded ones.

For all four paths the PMFs produce qualitatively correct
results, appropriately lowering and raising the energy of the
four minima with respect to the vacuum calculations. In all
cases, the PMF minima agree with the explicit water simu-
lation within 2.0 kcal/mol. The barrier heights between
minima, however, are considerably reduced in the PMF cal-
culation !except in the 0R to + path". Therefore, we conclude
that the potentials are adequate for computing relative ener-
gies, but inadequate for reproducing the energies of the tran-
sition states between them.

In many applications of biomolecular simulations, the
goal is to obtain the density distribution of the conformers of
the molecule. Since the occupancy of a state is proportional
to the Boltzmann factor, only the energetically low lying
states are occupied with a high probability. The probability
of occupancy of the minimum energy states is fairly insen-
sitive to the energy of the transition states, since these are
very sparsely occupied. Therefore, we feel that even though
our PMFs inadequately reproduce the heights of the barriers
between minima, they should nonetheless reliably reproduce
the equilibrium density of states of the solute.

One of the principal advantages of PMF calculations is
that they are nearly three orders of magnitude faster than the
simulations with explicit water molecules. Furthermore,
none of the approximations that we used to generate the
PMFs required fitting parameters. Therefore the agreement
we find with explicit water calculations only depends on the
approximations themselves.

By comparison, other groups16 have studied how the sol-
vation energy calculated by the method of Eisenberg and
McLachlan14 affects the energy of the alanine dipeptide
minima. In their work they compute the solvent accessible
surface and multiply it by the atomic solvation parameters to
obtain the solvation energy of the 0R and C7ax conformers.
The solvation energy is found to be 0.65 kcal/mol lower for
the 0r conformation. In our calculation with explicit water
!figure 7!a"" we find that the introduction of water destabi-
lizes the C7ax conformation by 4.5 kcal/mol. The Eisenberg
method does not include the screening effect of water on
intra-solute electrostatic interactions, by rearrangement of
the water dipoles. Therefore, to explain the discrepancy in
the two calculations we conclude that the screening effect
accounts for the bulk of the free energy change.

When comparing our results to those computed by the
solution of the RISM equations, we find that while our ap-
proach seems to correctly reproduce the relative energies of
the four minima found in solution, the RISM approach pro-
duces results in sharp contrast to ours and other studies. For
instance, the work of Pettitt and Karplus,1 finds that the
C7ax conformation is more stable than the 0R one. In fact,
they find that the probability distribution of the alanine
dipeptide conformers is heavily peaked in the C7ax and +
region, while most, including our work, finds the 0R and +
region to be principally occupied in water. However, it

FIG. 7. The four free energy profiles corresponding to the paths of Fig. 4.
The solid lines represent the Monte Carlo simulation with explicit water, the
dashed lines the simulation with the potentials of mean force and the dash–
dot lines correspond to simulations in vacuum !OPLS energy with #!1).
The figures correspond to the following paths: !a" + to 0L , !b" C7ax to
0L , !c" 0R to C7ax and !d" 0R to + .
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should be noted that we are not using the same bare poten-
tials as those used in the work of Pettitt and Karplus, and that
this may account for some of the differences in our results.

In conclusion, the comparison of the free energy profiles
produced with PMFs and explicit water simulations, pro-
duces qualitatively correct results. In conjunction with the
enormous advantage in computational efficiency of this tech-
nique with respect to simulations with explicit water, we feel
the results demonstrate that the procedure could be ex-
tremely useful in simulations which aim to explore confor-
mational space. As we have seen, with explicit water simu-
lations it is difficult to exhaustively sample the phase space
of four paths of the alanine dipeptide, because of the many
degrees of freedom associated with 200 water molecules.
Therefore, when dealing with even larger molecules, use of
the PMFs will allow one to sample molecular conformational
spaces that cannot be adequately sampled with conventional
simulations.

V. SUMMARY

We have developed a procedure for generating potentials
of mean force between any two uncharged atomic solutes in
an aqueous solution. This entails the calculation of the
solute–solvent correlation functions by running a Monte
Carlo simulation with explicit solvent. We next approximate
the water oxygen and hydrogen density around our two sol-
utes by making use of the Kirkwood approximation. Finally,
by computing the mean force exerted by the water on the
solutes, and integrating along the solute separation distance,
we are able to generate the PMFs.

We first showed that this procedure reproduces well the
PMFs between two methane molecules in water, when com-
pared to a molecular dynamics simulation with explicit water
molecules. By introducing the approximation that the effect
of water on intra-solute electrostatic interactions may be in-
corporated into a dielectric constant of 80, we are able to
extend the procedure to also produce PMFs between charged
molecules.

Finally, by assuming that the n-body potential of mean
force, for the molecule alanine dipeptide, may be expressed
as the sum of the 2-body PMFs, as in the preceding work of
Pettitt and Karplus,1 we were able to calculate the free en-
ergy profiles along four paths in the molecule’s 1 ,2 space.
These were in reasonable agreement !within 2.0 kcal/mol"
with the same profiles computed in a simulation with 200
water molecules, that used the same intramolecular force
field parameters. However, because the calculation with
PMFs excludes the water molecules, it is able to generate the
profiles three orders of magnitude faster than the full simu-
lation.

Therefore we have shown that without explicitly includ-
ing water molecules in a simulation of a biomolecule, one is
able to reproduce many of the effects of water. Since we
screen all electrostatic interactions with a dielectric constant
of 80, we include an estimate of the electrostatic screening
effects of water. Furthermore we are able to represent explic-
itly the hydrophobic effect, the attraction between Lennard-

Jones particles in water, as seen, for instance, in the PMF
between methanes !see Fig. 2".

We cannot yet accurately model water mediated hydro-
gen bonds. However, in the PMFs between methanes, we
notice a second minimum in the potential at 7 Å, when a
water molecule exactly fits between the two methanes.
Therefore, our technique does account for aspects of water
mediated interactions.

We have attempted to make brief comparisons of our
results with those computed by some of the techniques men-
tioned in the introduction. The potential of mean force be-
tween methanes is calculated using the approach of Eisen-
berg and McLachlan14 and found to produce too shallow a
minimum. By contrast, the potential between sodium and
chlorine is greatly exaggerated when the dielectric is set to
be proportional to the distance (#!r). We have also shown
that the solvation energy of the alanine dipeptide, computed
by the method of Eisenberg and McLachlan, represents only
a small contribution to the free energy profiles, suggesting
that the dominant effect of water arises from its screening of
electrostatic interactions. Finally we compared the probabil-
ity distribution of alanine dipeptide conformers produced by
us with those generated by the RISM technique,1 and found
that while our results agreed with other published work, the
RISM approach yielded significantly different results.

In conclusion, simulations run with our PMFs, although
not as accurate as those with many explicit water molecules,
permit a more thorough sampling of conformational space
than is possible with other approaches. The primary limita-
tion of the approach presented here is that it is only valid for
small molecules, where the solvent accessible surface is
close to the total molecular surface. Furthermore the limited
accuracy of the Kirkwood superposition approximation does
not allow us to accurately compute the electrostatic screen-
ing of the intrasolute potentials, which is why we introduce a
dielectric constant of 80 in the model.

However, the procedure we have developed has the dis-
tinct advantage of using various approximations that do not
require any arbitrary fitting parameters. We therefore feel it
is a useful initial step in the development of rigorous poten-
tials of mean force, that might include 3-body and higher
order terms, for application to biomolecular simulations.
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