Modeling solvation contributions to conformational free energy changes
of biomolecules using a potential of mean force expansion
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The standard free energy perturbation (FEP) techniques for the calculation of conformational free
energy changes of a solvated biomolecule involve long molecular dynamics (MD) simulations. We
have developed a method for performing the same calculations many orders of magnitude faster. We
model the average solvent density around a solute as the product of the relevant solute—solvent
correlation functions (CF), following the work of Garcia, Hummer, and Soumpasis. We calculate the
CF’s by running Monte Carlo simulations of a single solute atom in a box of explicit water
molecules and also angular dependent CF’s for selected pairs of solute atoms. We then build the
water shell around a larger solute (e.g., alanine dipeptide) by taking the product of the appropriate
CF’s. Using FEP techniques we are able to calculate free energy changes as we rotate the dihedral
angles of the alanine dipeptide and we find they are in close agreement with the MD results. We also
compute the potential of mean force as a function of distance between two solvated methanes and
calculate the contribution of the solvent to the free energy change that results from rotating n-butane

about its dihedral angle. © 1995 American Institute of Physics.

I. INTRODUCTION

Recent advances in molecular dynamics (MD) simula-
tions coupled with free energy perturbation (FEP) techniques
render the calculation of conformational free energy changes
of solvated biomolecules quite feasible.! However these
simulations typically require placing the solute molecule in a
box of hundreds of explicit water molecules, and then run-
ning 100 000 MD steps to get accurate statistics. With the
computational power of present computers this entails run-
ning a simulation for days. It would be useful then to de-
velop techniques that are able to approximate the MD results
in a fraction of the time.

Recently it was shown by Hummer and Soumpasis® that
they could accurately reproduce the density distribution of
water at the water—ice boundary using a potential of mean
force expansion. They accomplished this by calculating the
two- and three-point correlation functions (CF) between all
possible combination of oxygens and hydrogens (OO, OH,
HH, OO0, OOH, OHH, and HHH) in the liquid state. Al-
though these CF calculations involve lengthy Monte Carlo
(MC) runs, once they have been calculated the computation
of the density is accomplished in seconds. They have also
used this same approach to calculate the water structure
around DNA, and find that it successfully reproduces many
known experimental features.’~

We have applied a similar approach to build the mean
water density around small biomolecules. We then extend the
previous work to compute the effect of this mean field water
on free energy changes associated with conformational
changes in our solute molecules. The free energy changes are
computed using FEP techniques.

We calculate the two-point CF’s between single solute
atoms and water oxygens or hydrogens. We also compile
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angular dependent CF’s, with cylindrical symmetry, for wa-
ter oxygens or hydrogens relative to pairs of solute atoms.
We can then calculate the water density around any simple
solute that can be built up out of our two-point and angular
dependent CF’s. As we perturb the conformation of our sol-
ute we compute the change in solvation energy with respect
to the mean water density of the unperturbed state. This FEP
procedure allows us to build up the component due to solva-
tion of the free energy profiles for any conformational
change in the solute.

We demonstrate the usefulness of this technique on three
systems: (1) The potential of mean force between two sol-
vated methanes, as a function of the distance between them.
(2) The solvent contribution to the free energy change asso-
ciated with the rotation of n-butane about its dihedral angle.
(3) The free energy change necessary to rotate the alanine
dipeptide about its dihedral angles along four separate trajec-
tories.

Il. METHODS
A. Potentials of mean force expansion

Following the derivation of Hummer and Soumpasis we
first develop the expression for the density of water around a
solute as a function of the solute—solvent CF’s. The condi-
tional density of a simple monoatomic liquid may be ex-
pressed as

g(”“)(r,rl,...,rn)

g(”)(rl yeeisTy)

pUlrr=p , 1)
where g is the n-particle correlation function and p is the
bulk density. In the case of water one would have two sepa-
rate expressions for the density of oxygen, py, and hydrogen,
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pu - In our situation the coordinates ry,...,r,, would be those
of the solute, while r would be the position at which we
compute the density of water oxygens and hydrogens. The
potential of mean force (PMF) is defined as

W(ryesr)=—kpT In g (ry,...01,). )
The PMF may then be expressed in terms of few body po-

tentials (see, e.g., Munster®) as
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In the case of a fluid W'"r=0. Retaining only two- and
three-body terms in the expansion we then write the condi-
tional density as

n
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If we apply the Kirkwood approximation’

(3)(
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to the above formulation of the density then we are simply
approximating the density as a product of two-point CF’s. In
other words, we are treating a many-body PMF as a sum of
two-body PMF’s. For simplicity we will refer to the use of
this approximation as a first order expansion while writing
the density as a product of two- and three-point CF’s, as in
Eq. (7), as a second order expansion.

If we wish to calculate the water density around a single
hydrophobic solute atom it is sufficient to use a first order
expansion since the density is spherically symmetric. We
have also found that to compute the PMF between two meth-
anes this approximation is sufficient to reproduce MD results
effectively. However if the solute is more complex then one
must include second order terms or three-point CF’s to cor-
rectly account for the density.

For instance, a first order expansion of Eq. (4) is unable
to correctly account for the density of liquid water around a
fixed water molecule. Because of the nature of the hydrogen
bond, water molecules, even in the liquid state, tend to form
tetrahedral structures; in these configurations the water oxy-
gens form an isosceles triangle with two sides of length 2.8
A and the third 4.5 A. Since the water oxygen—oxygen two-
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TABLE I. OPLS parameters used in simulations.

Atom type Charge ge € T
CH, 0.0 3.73 0.294
CH; 0.0 3.905 0.175
CH, 0.0 3.905 0.118
C, 0.2 3.8 0.08
C(0) 0.5 3.75 0.105
0o(C) -0.5 2.96 0.21
N(H) —0.57 3.25 0.17
H(N) 0.37 0.0 0.0
Cg 0.0 3.91 0.16
(NH)CH, 0.2 3.8 0.17

point correlation function has a peak at approximately 2.8 A,
following the Kirkwood approximation an equilateral tri-
angle of water oxygens separated by 2.8 A would be strongly
favored. However, empirically water is found preferentially
in the above isosceles triangle configuration while the equi-
lateral triangle one is strongly disfavored, showing the im-
portance of the three-point CF’s. Hummer® found that a sec-
ond order expansion that includes both two- and three-point
CF’s is sufficient to reproduce this effect and that the density
of water around a fixed water molecule computed this way
reproduces well the MC results.

In the case of the alanine dipeptide the solute has a com-
plicated charge distribution therefore we are forced to extend
our expansion to second order. Since the alanine dipeptide
contains 12 atoms (in a united atom model) this involves the
computation of many three-point CF’s. We further simplify
the problem by choosing to calculate only the CF’s associ-
ated with the strongest dipoles (the CO, C, C4z, and NH
groups and water oxygens or hydrogens) while approximat-
ing all other three-point CF’s by using the Kirkwood ap-
proximation. This may appear to be a rather limiting approxi-
mation; however we will show that it works reasonably well
in reproducing MD results for certain conformations of the
alanine dipeptide but that additional three-point CF’s are
needed in the region of the (¢,i) plane where intramolecular
hydrogen bonds are involved.

B. Calculation of correlation functions

To compute the correlation functions (CF) we placed our
solute (e.g., united atom methane) in a 19 A box with peri-
odic boundary conditions. We then solvated it with SPC
(Ref. 8) water molecules at a density of 1 g/cm’.

The potential functions and parameters we used were
those developed by Jorgensen and Tirado-Rives, since these
are optimized for liquid simulations (hence known as OPLS
potential functions).”!” The form of the potential function is

qg.e’ A .

Virr)= S (297 Ay Cii) ©)

INRES Tij Fij Tij

In all cases the CH,, groups are treated as united atoms, so
that only one position is used to describe these groups (see
Table I).

As suggested by Levitt,'" the Coulomb component of the
potential is truncated by multiplying it by the function
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S(ry=[1—(r/r.)]?, with r.=8.0 A. This function elimi-
nates spurious forces at the cutoff distance since its deriva-
tive also goes to zero there. We have verified that water—
water CF’s calculated using S(r) are not significantly
different than those computed using an unscreened Coulomb
potential and that furthermore they reproduce the experimen-
tal (obtained from neutron diffraction) water—water CF’s
well.!>1

To select moves (translations and rotations) of molecules
we use the standard Monte Carlo Metropolis algorithm.'*
The moves were selected from a flat distribution with ranges
+0.15 A for translations and *15° for rotations. At the cho-
sen simulation temperature (25 °C) these moves yield and
acceptance rate of approximately 40%.

In the case where our test solute consists of a pair of
atoms with partial charges we approximate the three-point
CF between the two solute atoms and water oxygens or hy-
drogens as cylindrically symmetric angular dependent CF’s.
The distance between the two solute atoms is held fixed
throughout the simulation. We treat the midway point be-
tween the pair as the center, and calculate separate CF’s for
15 degree intervals, from 0 to 180 deg. At each angular in-
terval we calculate the distance dependence with bin widths
of 0.1 A (this same value is used for the spherically symmet-
ric CF’s). Thus we tabulate 12 different CF’s for all the se-
lected pairs.

C. Free energy perturbation

To calculate the free energy change associated with a
conformational change in the solute we use free energy per-
turbation (FEP) theory.'® The change in free energy due to a
change in angle d¢; can be written as

AA=A(¢;i+6¢)—A(P))
=-p"! ln<exp{_ﬁ[U(¢i+5¢i)_U(¢i)]}>q§i' (10)

Here ¢; represents any internal coordinate or coordinates and
( ) defines an equilibrium average over all other degrees of
freedom with ¢; constrained.

To apply this formula we calculate the water shell
around the solute that is in its conformation ¢; . We construct
a cubic grid with 0.5 A spacings extending 8.0 A from the
solute and compute the density of water oxygens and hydro-
gens at each grid point. If, for example, there are no internal
degrees of freedom in the solute other than ¢, then we need
not average over any other degrees of freedom since our
water shell is already an average water distribution. We can
therefore immediately calculate the free energy change by
computing U(¢;+ d¢p;) — U(¢;) with the water shell fixed.
We calculate U(¢;) by summing the OPLS interaction en-
ergy between the solute atoms and the grid points with their
respective densities of water oxygens and hydrogens.

To calculate the free energy profiles we decompose the
trajectory into N intervals (for example 15 in the case of the
alanine dipeptide). We fix the solute in the conformation ¢, ,
and compute the water shell around it. We then perturb ¢ to
its intermediate value between ¢, and ¢, ; and compute the
energy between the solute and the water shell of ¢, . We also
perturb ¢ to the intermediate value between ¢, and ¢,
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FIG. 1. Two-point correlation function between a united-atom methane and
water oxygens (solid) and hydrogens (dashed) obtained from MC simula-
tions.

and again calculate the energy with respect to the water shell
of ¢, . We repeat this procedure to obtain 2N values of AA
which we then sum to construct a free energy profile.

lll. RESULTS AND DISCUSSION
A. Potential of mean force between two methanes

The potential of mean force (PMF) between two meth-
anes has been studied extensively because it is one of the
simplest potentials that describes the hydrophobic effect.'¢
As expected from previous work!” the ordering of water
around a hydrophobic solute creates an effective attraction
between two methanes since reducing their surface area in
contact with water is energetically favored. Previous studies
had also found that a second minimum in the PMF occurs
when the two methanes are separated by about 7 A, allowing
a single water molecule to lie between them.

Using the OPLS parameters for a united-atom methane
(see Table I) we first calculate the CF’s between methane and
water oxygens or hydrogens (see Fig. 1). For a given
methane—methane distance we build a water shell around the
two methanes by calculating the oxygen density py and hy-
drogen density py, each as a product of the two CF’s, as
explained above. We compute the density of the water oxy-
gens or hydrogens on a cubic grid with 0.5 A spacings that
extends 8 A from the methanes. We then construct a series of
new water shells as the separation between the methanes
grows from 3.5 to 8 A in 0.1 A steps.

Using FEP theory in the form

AA=A(r+6r)—A(r)
= _B71 1n<exp{—,8[U(r+ 5r)—U(r)]}>,,

where U(r) is the sum of the standard OPLS energy between
the solute and py and py at each grid point, we were able to
calculate the PMF. We find remarkable agreement with pre-
vious MD studies, '® as can be seen in Fig. 2. The position of
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FIG. 2. Potential of mean force as a function of distance between two
solvated methanes. The dashed line is from the MD simulation of van Belle
(Ref. 16). The solid line is from this work.

the minima, at 4 and 7 A, are equal to within 0.2 A in the
two curves. The barrier heights are within 0.2 kcal/mol of
each other. Thus in this very simple case the methodology is
effective in reproducing the results of an extensive MD
simulation.

It should also be noted that to construct our PMF re-
quires only a few seconds, while the evaluation of PMF’s
using MD may require a time many orders of magnitude
longer. For instance Belle'® reports that to construct the
curve in Fig. 2 he ran a 670 ps simulation with 2 fs time
steps. Thus he evaluated 335 000 time-steps to our 45. To
estimate the computational difference of timesteps in the two
methods we consider that we have approximately 300 grid
points (using 0.5 A spacings) for every explicit water mol-
ecule used in MD simulations. The explicit waters in MD
however interact with approximately 60 other waters (using
an 8 A cutoff) while our grid points do not interact with each
other but only with the solute. We conclude that the energy
calculation of our method at each timestep involves approxi-
mately five times as many computations as his. Therefore,
given the difference in number of timesteps, we require three
orders of magnitude fewer computations to calculate the
same curve.

B. Effect of solvation on n-butane

n-Butane is a small hydrophobic molecule with only one
major degree of freedom, its dihedral angle. In the
extended-H or united atom model it can be described by only
four united carbon atoms. This is the model we chose to
study using the OPLS parametrization'® (see Table I).

A recent study of the effects of solvation on the confor-
mational states of n-butane by Tobias and Brooks!'® found
that using this description the relative populations of the
gauche and trans conformers were equal in vacuum and wa-
ter; they report an equilibrium constant K= (x,/x,) =0.54 in
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FIG. 3. Solvent contribution to the free energy associated with the rotation
of n-butane about its dihedral angle. As can be seen the trans and gauche
conformations are equally favored by water.

both the gas and water phase. However it should be noted
that these results are strongly model dependent. For instance
Brooks'® reports that in an all atom model of n-butane (as
opposed to a united atom model) the water tends to favor the
more compact gauche over the more extended trans confor-
mation; in this case K=0.59 in the gas phase and K=0.85 in
the water phase.

We computed angular dependent three-point CF’s for the
CHj;, CH, groups of n-butane described by the OPLS param-
eters. We construct an n-butane using ideal bond angles and
bond lengths. During the simulation we freeze all degrees of
freedom (bond angle, bond length, etc.) other than the dihe-
dral angle. We then calculate the density of water oxygens
and hydrogens on a 0.25 A cubic grid around the n-butane as
we rotate the dihedral angle from —180 to 180 deg in 10 deg
steps. Using FEP we compute the corresponding free energy
changes that result from this rotation. For clarity we only
consider the free energy change due to solvation and neglect
internal dihedral potentials of n-butane.

In Fig. 3 we show the solvent contribution to the free
energy profile about the dihedral angle of n-butane. We have
symmetrized the profile about the angle ¥=0.0. We find that
the free energy has two minima; one in the cis and one in the
trans conformation. The trans is approximately 0.3 kcal/mol
higher than the cis, and the barrier between them is approxi-
mately 0.3 kcal/mol (this is within 25% of the barrier found
by Roux'?).

The gauche conformer occurs when the dihedral angle is
approximately 60.0°. Thus in our profile the trans conformer
is higher than the gauche by 0.1 kcal/mol. Our results agree
to within 0.1 kcal/mol to those of Brooks'® who finds that the
relative populations of the gauche and trans conformers are
unaffected when going from the vacuum to the water phase.

Thus in our calculations the hydrophobic effect favors
the more compact gauche conformation over the more ex-
tended trans by 0.1 kcal/mol. Experiments are not yet able to
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FIG. 4. The ¢—¢ plot of the alanine dipeptide conformations that corre-
spond to equilibria. The lines denote the constrained trajectories of Figs. 5
and 6. The exact values of the minima are ap=(—95,—65), B=(—85,125),
a;=(55,65), and C5,,=(65,—50).

measure the relative populations of these conformations in
water, thus we are not able to verify this prediction.

C. Solvation of the alanine dipeptide

The alanine dipeptide, N-acetylalanyl-N-Methylamide,
has been extensively studied because of its simplicity and its
relevance to protein chemistry.”’>* In the extended atom
representation it consists of only 12 atoms whose major de-
grees of freedom are rotations around the dihedral ¢ and ¢
angles. There are four primary minima in the ¢— i space;
these conformations are labeled as B, oy, a; , and C;,, (the
B region however has several minima). Various groups have
reported on the effect of solvation on the relative free energy
of these states. Recently Tobias and Brooks have reported on
the free energy change along the four pathways (see Fig. 4)
connecting the minima using standard MD techniques.”® Us-
ing the above procedure we have calculated the free energy
change along two of these pathways which we then com-
pared to the previous work.

1. Correlation functions

As mentioned above, we extend the potential of mean
field expansion to second order for the case of the alanine
dipeptide. However since this would entail the calculation of
many three-point CF’s we further simplify the problem by
approximating most of the three-point CF’s as the product of
the two-point CF’s as prescribed by the Kirkwood approxi-
mation. Therefore we only calculate the three-point CF’s ex-
plicitly for the cases where we expect the Kirkwood approxi-
mation to break down. We expect this to occur for the three-
point CF’s between pairs of solute atoms with a strong dipole
moments and water oxygens or hydrogens. This choice is
consistent with the work Hummer who found that the liquid
water density around ice, which has a strong dipole moment,
was not well approximated by Kirkwood and that the inclu-
sion of three-point CF’s greatly improved the results. Fur-
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thermore, we have already shown that when dealing with
uncharged atoms, such as n-butane, two-point CF’s are suf-
ficient.

Applying the above criterion, we find that using OPLS
parameters the largest dipoles in most conformations of the
alanine dipeptide arise from the CO, C,Cg, and NH pairs
(see Table I). We compute angular dependent CF’s, which
are approximations of three-point CF’s, for these three pairs.
For the remaining two single atoms (the two methyl groups
in a united atom description) we compute spherically sym-
metric two-point CF’s.

In one conformation, which is labeled C,,,, there is an
intramolecular hydrogen bond between a carboxyl oxygen
and an amide hydrogen. These two atoms form a strong di-
pole and hence to get reasonable accuracy we would need to
compute the three-point CF between these two atoms (as a
function of their spacing) and water oxygens or hydrogens.
In the present work however we choose not to explore the
free energy profiles around this conformation, and will leave
this for future work.

A consequence of our use of only a limited number of
explicit three-point CF’s is that at certain positions around
the alanine dipeptide in any conformation our procedure
computes unreasonably large water oxygen and hydrogen
densities (more than 50 times the bulk water density). To
obtain reasonable answers in our free energy calculations we
therefore truncate all densities above 10 times the bulk den-
sity to 10. This value is arrived at empirically by trying dif-
ferent values and comparing the resulting free energy profiles
of our two trajectories to the MD results. We should however
point out that these profiles are not very sensitive to the value
of this parameter; changing the value from 10 to 15 changes
the profiles by less than 1 kcal/mol. A further motivation for
the use of the value 10 is that it corresponds to the largest
density, or peak in observed CF, that we find in our MC
simulations with explicit water that we run to compute the
CF’s.

2. Free energy profiles

We wish to compare the free energy curves along the
two pathways in vacuum and in water. To perform these
calculations we must include a potential for bonded interac-
tions. We have chosen the standard CHARMM potential that
includes terms for bond stretching, angle bending, torsional
potentials, and improper torsional potential *

To compute the two free energy profiles we first have to
locate the free energy minima in phi—psi space in the pres-
ence of solvent, that correspond to the a;, B, and «; con-
formers. We therefore perform an unconstrained MC simula-
tion for 100 000 steps starting near the expected positions of
these minima. At each step we construct a water shell on a
cubic grid with 0.5 A spacings and calculate the resulting
interaction with the solute. We then bin up the phi—psi space
into 10X 10 deg bins and take the peaks of the probability
distributions to be our free energy minima. We use these
minima as the start and end points for the profiles in both
vacuum and in solution.

To perform the calculation of the free energy profile in
vacuum we impose holonomic internal coordinate con-
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FIG. 5. The free energy profile connecting the 8 and «; conformers of
alanine dipeptide. In the B conformation ¢=—85.0 and y=125. In the «;
conformation ¢=55.0 and =65.0 (all angles in degrees). The dashed line
represents the vacuum calculation. The solid line represents the solvated
calculation using the techniques of this work. The dash—dot line is the data
from the work of Tobias and Brooks using MD to compute the free energy
profile in the water phase.

straints on the dihedral angles and then use FEP theory. This
is accomplished by placing a strong harmonic constraint on
the dihedral angles at 10 deg intervals along the pathway. At
each interval we allow the molecule to equilibrate for 10 000
Monte  Carlo steps and then we  compute
—B ' In(exp{—BlU(p+ 8¢, 4+ ¢ — U(b, ) I}y, for an-
other 10 000 steps.

The solvation contribution to the free energy profiles
along the two trajectories are calculated in the same manner
as in the case of n-butane. We first generate a structure for
the alanine dipeptide using the program QUANTA (Molecular
Simulations Inc.). We rotate the dihedral angles of this struc-
ture through 15 points equally spaced along the trajectory. At
each point we keep the bond lengths and angles fixed. We
then proceed to build a shell of water on a cubic grid with
0.5 A spacings and calculate —B ' In exp{—BU(p+ 66,
b+ o) —U(d, )1}, with respect to the fixed water shell.

We find that we do not need to allow the alanine dipep-
tide bond angles and lengths to relax during this calculation
since we obtain good agreement with the MD free energy
profiles by summing our vacuum profile to our solvation
profile with the frozen dipeptide (see Figs. 5 and 6). We
believe that this is a consequence of the empirical fact that
these solvation profiles are relatively independent of minor
(0.2 A rms) deviations in the atomic positions that occur dur-
ing a MC run with constrained dihedral angles. Therefore it
is a good approximation to neglect the averaging over con-
strained solute thermal motion in the FEP formula altogether.

Given the nature of our approximations (using a limited
set of explicit three-point CF’s, frozen alanine dipeptide
model for the FEP solvation calculations) and the different
parametrization of the molecule (OPLS nonbonded interac-
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FIG. 6. The free energy profile connecting the a; and B conformers of
alanine dipeptide. In the a conformation ¢=—95.0 and ¢)=—065. In the 8
conformation ¢=-—85.0 and =125.0 (all angles in degrees). The dashed
line represents the vacuum calculation. The solid line represents the solvated
calculation using the techniques of this work. The dash—dot line is the data
from the work of Tobias and Brooks using MD to compute the free energy
profile in the water phase.

tions instead of CHARMM) it is remarkable that our free en-
ergy profiles are so similar to those computed by Brooks.
The relative free energy changes between the three conform-
ers are summarized in Table II. They agree with Brooks’ MD
calculations within 0.5 kcal/mol. The Barrier heights are also
accurate to within 1.5 kcal/mol. Our results are more similar
to those of Brooks than several other studies of the alanine
dipeptide done by either MD or MC (see Table II). In par-
ticular they are much more effective at reproducing the MD
results than RISM calculations that also attempt to construct
PMF’s out of analytically computed CF’s.?>%

IV. CONCLUSION

We have demonstrated that a restricted set of CF’s can
be used to accurately calculate the water oxygen and hydro-
gen density around small molecules. Furthermore we have
shown that this water shell can be used in conjunction with
FEP theory to compute the solvation contribution to confor-
mational free energy changes of the molecules. The potential
of mean force between two solvated methanes calculated in
this manner reproduces the MD results very closely even
when only two-point CF’s are used. Similarly three-point

TABLE II. Comparison of theoretical results for the relative free energies of
alanine dipeptide conformations in water.”

Anderson and Pettitt and Tobias and
Conformation Hermans (MD) Karplus (RISM) Brooks (MD) This work

ap 0.0 0.0 0.0 0.0
i -14 —-02 0.3
a 1.1 -0.7 38 42

“Free energies (kcal/mol) with respect to the ag conformation.
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CF’s allow us to correctly compute the effect of solvation on
dihedral rotations of n-butane; our results agree, within 0.1
kcal/mol, with MD calculations of the relative populations of
the gauche and trans conformations and the barrier between
them. Finally, we have shown that even in a more complex
system such as the alanine dipeptide, evaluating the explicit
three-point CF’s for only three dipole pairs in the solute, our
resulting free energy profiles along paths joining free energy
minima are in good agreement with those obtained by
Brooks using MD.? In all cases this procedure has the dis-
tinct advantage over the standard MD techniques that it can
obtain the free energy changes three or more orders of mag-
nitude faster.

This methodology could potentially be extended to effi-
ciently construct oxygen and hydrogen water densities
around entire proteins in any conformation. Hummer et al.
have already shown how a similar procedure reproduces the
water density around DNA,3_5 and Hummer and Garcia have
demonstrated that it also reproduces the water density at the
interface of an antibody—antigen complex (personal commu-
nication). In all cases this requires the computation of many
more two and three-point CF’s than used in this work. If we
estimate about one or two three-point CF’s per different
amino acid side chain this might entail 30 three-point CF’s.
However once the CF’s are computed the water density can
be built up in seconds.

It should also be noted that since the oxygen and hydro-
gen water densities computed on a grid do not interact with
each other, this method could easily and effectively be imple-
mented on a parallel machine.

At present a fully solvated small (50 residue) protein can
only be simulated for 1 ns using MD, while much of the
interesting behavior (e.g., protein folding) occurs on much
longer time scales up to 1 s. Thus this more computationally
efficient technique for computing solvation effects, when
used in conjunction with novel MD algorithms,?’ that have
been used to simulate polypeptide motions for microseconds,
could prove extremely useful for extending the simulation
time scales of these large biomolecules.
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