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INTRODUCTION 
 
Computational methods used to analyze protein function can be divided into three broad 

categories: sequence, expression and interaction based methods. Sequence based methods rely 
on the ability to construct alignments between protein sequences. These methods are by far 
the most developed in the field of bioinformatics, with the bulk of the development occurring 
over the past two decades. Recent innovations in protein sequence alignment methodology 
include indirect homologies, graph based analysis, Bayesian alignments and protein fusion 
analysis. One important consequence of new alignment techniques has been the cataloguing 
of protein domains. 

Over the past few years protein sequence alignments methodologies have been extended 
to utilize genome sequences. Genome based methods exploit the information contained within 
the full sequence of an organism's genome. As this review is being written over one hundred 
complete genomes are available for analysis. The bulk of these come from bacteria and 
archaebacteria. The genomes of eukaryotes such as yeast, fruit fly, C. elegans, Arabidopsis 
thaliana and humans have also been completed. The alignment methods covered in this 
review that use genome sequence information are phylogenetic profile analysis, which 
searches for the absence or presence of gene families across organisms, and gene neighbor 
analysis, which searches for gene pairs whose proximity on the genome is preserved across 
species. Gene neighbor analysis allows one to partially reconstruct the components of operons 
within bacteria. 

The second category of computational methods we will review utilizes the information 
from mRNA profiling experiments. Messenger RNA concentrations of each expressed gene 
within a cell may be measured on an array when a fluorescently labeled mRNA hybridizes to 
a particular spot on the array. Using this technology it is possible to study changes in gene 
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expression as cells are perturbed. One type of analysis of this data involves clustering it into 
sets of genes with similar expression levels across multiple experiments. These clustered 
genes often participate in the same biological process and so this technique may be used to 
infer the functions of the proteins for which the clustered genes code.  

The last technique that we will review involves the study of the function of a protein 
through an analysis of its interacting partners. Protein interactions may be measured 
experimentally using a variety of techniques: yeast two hybrid, co-precipitation, and protein 
fragment complementation assays among others. To date thousands of protein interactions 
have been reported in the literature and catalogued in protein interaction databases. Using 
these databases it is possible to identify the interacting partners of a specific protein. This 
analysis may permit one to obtain a deeper understanding of protein complexes and the 
biological processes in which proteins are involved. 

 
 

DEFINITION OF PROTEIN FUNCTION 
 
In order to discuss computational approaches to assign protein function, it is first 

necessary to briefly review what is meant by protein function. Borrowing from the Gene 
Ontology Consortium (Gene Ontology), protein function may be understood at two levels: 
molecular function and biological process. 

The molecular function of a protein involves the tasks performed by individual gene 
products; examples are transcription factor, DNA helicase and kinase. The biological process 
instead involves broad biological goals, such as mitosis or purine metabolism, that are 
accomplished by ordered assemblies of molecular functions. 

It is important to distinguish between these two function levels because different 
methodologies shed light on one or the other level. As an example of this distinction let us 
consider kinases. Within the human genome there are about 500 kinase genes. Most of these 
genes code for proteins that phosphorylate other proteins on serine, threonine or tyrosine 
residues. However the substrates of these enzymes vary greatly and include other kinases, 
small molecules or other proteins such as histones.  

Although all kinases share this common molecular function they are involved in very 
different biological processes. For instance mitogen activated protein kinases participate in 
signal transduction regulating cell division, glukokinases phosphorylate glucose and are part 
of the glycolytic pathway and histone kinases that phosphorylate histones are involved in 
transcriptional regulation and chromatin remodeling. 

Typically, one can learn more about the molecular function of a protein by using protein 
alignment techniques. These approaches group together regions of proteins with similar 
sequences and similar molecular functions. For instance, a multiple alignment of all human 
protein kinases reveals the highly conserved core kinase domain, with small differences 
between serine/threonine kinases and tyrosine kinases. Additionally subsets of the kinase 
family may be aligned to elucidate similarity in other regions such as extracellular domains 
and receptor tyrosine kinases. 

In contrast, to understand the biological process a protein is involved in it is necessary to 
understand how a protein fits within an interaction network and to look at the proteins it is 
linked to within the network. Methods that elucidate the biological process that a protein is 
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involved in include various non-homology alignment techniques discussed below, along with 
the clustering of genes based on their co-expression and the direct study of protein interaction 
networks.  

 
 

ALIGNMENT METHODS 
 
 

Protein Sequence Alignments  
 
During the course of evolution protein sequences are subject to point mutations and 

insertions and deletions of sub-sequences. These mutations act to gradually transform the 
amino acid sequences of proteins in newly evolving species. Although the amino acid 
sequences are altered, it is still often possible to recognize which sequences evolved from a 
common ancestor if one has an appropriate evolutionary model. To determine which 
sequences are homologous, and are likely to have descended form a common ancestral 
protein sequence, one needs an amino acid substitution matrix and an alignment algorithm. 

In many cases, amino acids with similar chemical properties can substitute for each other 
in a protein without significantly altering the protein’s function, while other amino acids 
make poor replacements. A substitution matrix captures these preferences and models the 
likelihood of changing one amino acid into another during the course of evolution. Typically 
the entries of these matrices are the log odds of these substitutions. Over the years many 
different substitution matrices have been developed such as BLOSUM (Henikoff 1992), PAM 
(Schwartz 1978) and Gonnet (Gonnet 1994), each one measuring these probabilities using 
different sets of starting alignments that have been manually created. 

Armed with a substitution matrix it is now possible to determine which positions in one 
protein sequences have remained unchanged or have mutated in another sequence. To 
determine the correspondence of the positions in two protein sequences one must find the 
correct alignment of the two sequences. Several methods that find the optimal alignment (that 
maximizes the log odds scores from the substitution matrix) between two protein amino acid 
sequences have been developed over the past few decades (e.g. Needleman 1970,Smith 
1981). More recently Bayesian statistics have been applied to rigorously compute optimal 
alignments (Zhu 1998). However, in general these approaches are computationally intensive, 
and thus not always applicable to large scale homology searches. 

The most commonly used alignment method to date is BLAST (Altschul 1999), which 
speeds up the optimal searches by limiting the space of all possible alignments to those that 
contain an exact small sequence match, without significantly compromising the results. This 
allows users to search for homologous sequences to a query protein in protein databases that 
contain millions of sequences. Using this method, searching a protein sequence against the 
full non-redundant protein sequence database requires less than a minute on a typical 
computer. 

In practice it is important not only to compute the optimal alignment between two 
sequences, but also to estimate the statistical significance of the alignment. The simplest 
method to compute the probability of an alignment is to repeatedly randomly permute one of 
the sequences, align it to the other sequence and measure how often it produces a score that is 



Matteo Pellegrini and Thomas G. Graeber 168 

higher than the alignment score between the two real sequences. It has been found that the 
distribution of alignment scores between two randomly permuted sequences approximates an 
extreme value distribution (see figure 1). The probability of observing a score greater than the 
actual alignment score between two sequences is given by 
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where m and n are the lengths of the two sequences and K and λ are two parameters that 
describe the width and mean of the distribution and are specific for a particular set of 
sequences.  

 
Figure 1. The Distribution of Alignment Scores between 

Two Randomly Permuted Sequences Approximates an Extreme Value Distribution 
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In contrast to the normal distribution the extreme value distribution has an exponentially 

decaying tail for large values of x. Therefore in an extreme value distribution a large value of x is 
more probable than in a normal distribution. 
 
The program BLAST does not report the probability of observing a more significant 

alignment between two sequences but the expectation of observing a particular alignment 
score if one is aligning a sequence to a large database of protein sequences. Starting with the 
extreme value distribution of alignment scores and the above equation for the probability of 
observing a score greater than S0, it is possible to calculate the expectation of observing an 
alignment score greater than S0: 
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where the parameters K and λ are computed a priori and held fixed for the entire search 
between a sequence and a database. Usually when the expectation is less than 0.001 the 
alignment is considered significant, but this threshold varies depending the particular 
application. 

Based on experimental evidence, we assume that the molecular function of the query 
protein is likely to be similar to that of the proteins to which it aligns significantly. Therefore 
by looking at the annotations of the aligned proteins we can rapidly get clues about the 
molecular function of the query protein. 

In some cases BLAST only produces a limited number of significant homologs, as 
measured by the expectation of observing an alignment score by chance. In these cases it is 
possible to incorporate additional information in order to extend the ability of alignments to 
recognize distant homologs. This has been accomplished, in part, by using transitive sequence 
comparisons (Park 1997,Gerstein 1998). Each sequence may be homologous to a limited 
number of others. These in turn may be homologous to other sequences not in the original set. 
It is reasonable to postulate that the original query protein is also homologous to the 
homologs of its homologs. Several researchers have shown that such a procedure may reveal 
a distant relationship between proteins that are known to be structurally similar, and hence 
may have a related function, that could not be found by conventional alignment techniques. 
Other techniques, such as multiple alignments based on an initial starting sequence (see PSI-
BLAST discussion below), can also be used to find distant homologs. 

 
 

Multiple Alignments and Domains 
 
Proteins are composed of both structural domains, regions that form stable 3-D structure 

by themselves, and loop regions, less ordered short regions that connect structural domains. 
Typically, domain sequences are more conserved across homologous proteins than loop 
regions, since domains are usually the most functionally and structurally important regions of 
the protein. The pattern of conservation of protein segments across families of homologous 
proteins may be revealed by extending the above pair-wise alignment techniques to construct 
multiple sequence alignments and identifying the highly conserved regions. 

Constructing multiple sequence alignments is more complex than computing pair-wise 
alignments between proteins, since there is not a straightforward technique to identify the 
optimal multiple alignment between groups of related sequences. However, many techniques 
have been developed that find approximate solutions to this problem by combining pair-wise 
alignments. A commonly used program to perform such multiple alignments is ClustalW 
(Higgins 1994).  

The study of multiple sequence alignments and domains not only elucidates aspects of a 
protein’s structure but is also helpful to understand a protein’s function. Protein domains 
often perform a specific functional task. They may for instance contain the functional residues 
for an enzymatic reaction. Proteins are often composed of multiple domains that perform 
disparate functions. Therefore, by assigning molecular functions to domains it is possible to 
enumerate all the molecular functions that a protein may perform. 
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One of the more popular tools for constructing multiple alignments, and studying domain 
functions is a variant of the BLAST program called PSI-BLAST (Altschul 1999). Unlike the 
standard BLAST program that uses a single substitution matrix this program constructs a 
position specific substitution matrix specific for the query sequence. To construct this matrix 
one first generates a multiple alignment using the regular BLAST results by aligning all 
sequences with significant homology to the query sequence using pair-wise alignments. This 
multiple alignment is then used to compute the amino acid distribution at each position of the 
alignment. From this information the position specific matrix is created that describes the 
likelihood of finding one of the twenty amino acids at each position of the query sequence. 
The alignment of the query sequence against the whole database is then repeated using the 
new position specific matrix. Scoring alignments using the position specific substitution 
matrices can detect distant homologs to the query sequence that might be missed using a 
position independent substitution matrix. Since domains are more strongly conserved than 
loop regions, alignments from an exhaustive calculation using PSI-BLAST between all 
known protein sequences have been clustered and used to define protein domains (and their 
boundaries) in the PRODOM database (Corpet 2000). 

More sensitive multiple alignment protocols have also been developed. For instance, 
hidden Markov models (HMM) for protein families are able to detect remote homologs that 
may be missed by simpler multiple alignment techniques (Krogh 1994). HMM’s consist of 
Markov chains, sequential conditional probabilities that describe the likelihood of inserting 
any one of the twenty amino acids or a gap at the next position in the chain. The many 
parameters that are used to define a HMM are trained against sets of homologous proteins. 
The models are then used to identify other sequences in a database that score well against the 
model. HMM’s have been created for most protein families and are compiled within the 
PFAM database (Bateman 2000). Other efforts to construct hidden Markov models for 
protein families include SMART (Letunic 2002), TIGRFAMs (Haft 2003), PIR SuperFamily 
(Wu 2003) and SUPERFAMILY (Gough 2001). 

Other approaches search for shorter motifs within domains that are conserved within 
protein families. In contrast to a domain sequence, which represents a structurally stable 3-D 
region of a protein, a motif pattern is generally very short including just a few amino acids. 
Often motifs reflect a small recognition surface on the protein. For instance it is known that 
potential N-glycosylation sites are specific to the consensus sequence Asn-Xaa-Ser/Thr. In 
this case the motif includes just three amino acids, the first of which is an asparagine, the site 
of N-glycosylation, the second any amino acid and the third either a serine or a threonine. It 
must be noted however that the presence of this motif is not sufficient to conclude that an 
asparagine residue is glycosylated, due to the fact that the nearby folding of a protein plays an 
important role in the regulation of N-glycosylation and that there is a non-dismissible 
probability that such a short motif may occur in a protein sequence by random chance. 

Other motifs contain highly conserved residues that are involved in the active sites of 
enzymes, commonly seen repeats or entire domain sequences. A large set of protein motif 
sequences are described in the PROSITE database using regular expressions and position-
specific matrices (Flaquet 2002). Regular expressions enumerate which residues are allowed 
to be present at a specific location of a motif. For instance, the regular expression 
corresponding to the glycosylation motif mentioned above is: 

 
N-{P}-[ST], 
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where N implies asaparagine at position 1, {P} any amino acid at position 2 and [ST] a serine 
or a threonine at position 3. An extension of PROSITE called PRINTS (Attwood 2003) builds 
domain signatures based on groups of sequence motifs.  

All of the above domain databases have been merged into the InterPro database (Mulder 
2003). This database provides a compendium of domain definitions that are all cross 
referenced and associated with a single protein indexing scheme. As such it represents an 
invaluable resource for enumerating protein domains, and studying the molecular functions of 
protein sequences. 

A slightly different approach to the ones mentioned above involves the use of graph 
analysis applied to a database of alignments. This approach allows one to rapidly cluster 
protein families and decompose proteins into their respective domains (Enright 2000) based 
on the analysis of pathways through the resulting graph.  

 
 

CO-EVOLUTION OF NON-HOMOLOGOUS PROTEINS 
 
 

Protein Fusions 
 
All the methods discussed so far study the evolution between homologous proteins. 

However, over the past few years various techniques have been developed to study the 
evolution, and functional relationship, between non-homologous proteins. The first example 
of these techniques we discuss is the search for protein fusion events that may have occurred 
between non-homologous proteins. 

In the past few years protein sequence alignments have been used to search for protein 
fusions (Marcotte 1999a, Enright 1999). During the course of evolution two genes encoding 
distinct proteins may fuse together to encode a single polypeptide. In certain cases such a 
fusion event may confer an evolutionary advantage to the organism by bringing into physical 
proximity domains that perform related functions. For instance, fusing together two enzymes 
that perform sequential enzymatic reactions in a metabolic pathway may generate a single 
enzyme that catalyzes the two reactions more efficiently. It has been shown that in general 
two proteins that undergo fusion events are more likely to interact or participate in the same 
biological process than two random proteins. 

It should be mentioned, however, that we do not necessarily know whether the fused 
protein or the separate proteins are the ancestral protein species. In other words, two genes 
may have fused or a single gene may have split into two separate genes coding for separate 
proteins. When enough evolutionary information exists for the organisms involved, a fusion 
event may be distinguished from a splitting event. However, since it is often difficult to 
distinguish between these two scenarios, for simplicity we will refer to both of them as fusion 
events. 

To identify fused proteins we seek two non homologous proteins that align to different 
regions of another protein (see Figure 2). In other words, the sequences of the two proteins 
are essentially fused into a single longer polypeptide chain. The longer protein has been 
dubbed the ``Rosetta Stone” protein, because it often reveals that the two unfused proteins are 
interacting or involved in the same biological process.  
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Figure 2. The Rosetta Stone Technique Searches for 
Non-Homologous Protein Sequences that have Fused into a Single Polypeptide 

 

 
Note: In this figure we see an example of two E. coli proteins, lytB and rpsA that are fused into a single 

protein in the organism Carboxydothermus hydrogenoformans. Regions with homology are shown 
in the same color in two sequences. Regions with no homology to the other two sequences are 
shown in white. 
 
The completed sequencing of many whole genomes has increased the power of this 

approach by greatly increasing the number of identifiable Rosetta Stone proteins. 
Additionally, this method is useful in the initial characterization of each newly sequenced 
genome. This is accomplished by identifying pairs of fused proteins where one member of the 
pair is characterized and the other is not. In this case, we associate the function of the 
characterized protein to the uncharacterized one.  

However, this approach may also yield a significant number of spurious fusion events 
due to the fact that, as we saw in the previous section, protein sequences contain conserved 
domains. The presence of domains makes protein sequences inherently modular and many of 
the modules are repeated hundreds of times throughout a protein sequence database. For 
example, finding a protein with a kinase domain that aligns to a Rosetta Stone protein is less 
likely to represent a true fusion event since many proteins within the human genome contain 
kinase domains. 

To estimate which protein fusion events are more likely to be real and hence to link 
together proteins that are likely to interact it has recently been suggested that one may use the 
hypergeometric distribution (Marcotte 2002): 
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where k represents the number of Rosetta Stone proteins found between two non-homologous 
proteins A and B, n the number of homologs of protein A, m the number of homologs of 
protein B and N the total number of proteins within the database. According to this function, 
proteins that have many homologs are less likely to be involved in real protein fusion and 
more likely to “appear” fused because they contain a commonly found domain just as it 
would be more likely to draw two non-face cards than two face cards since a deck of cards 
contains more non-face than face cards. In the end one cannot computationally distinguish a 
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true fusion from an apparent but false fusion, but it is nonetheless helpful to be able to rank 
results based on their probability of being true. In fact, it has been shown that pairs with more 
significant P values are more likely to participate in the same biological process than pairs 
with less significant ones (Marcotte 2002). 

 
 

Phylogenetic Analysis of Alignments 
 
Over the past few years the numbers of fully sequenced genomes has grown dramatically 

to include over one hundred organism, including human. The analysis of this data is already 
yielding significant information about protein function. At the simplest level, it is now 
possible to classify proteins into clusters of orthologous groups (COGs) (Tatusov 1997, 
Tatusov 2000). Orthologs are defined as protein homologs found in different organisms that 
have descended from a common ancestor through speciation. It is important to identify 
orthologous proteins because they typically perform equivalent functions. The COG 
methodology uses a graph based analysis to construct highly connected sets of orthologous 
proteins. The proteins within a COG are all assumed to perform equivalent functions.  

Operationally orthologs may be identified by finding pair-wise best hits: two proteins that 
are their closest homologs when two organisms are compared (Overbeek 1999). In other 
words if the closest homolog of protein A from genome 1 is protein B in genome 2, and the 
closest homolog of protein B in genome 2 is protein A in genome 1, then it is likely that 
proteins A and B are orthologs. 

From the analysis of orthologs across genomes it is also possible to construct 
phylogenetic profiles (Pellegrini 1999). These are binary arrays computed for each protein 
that encode whether an ortholog of the protein is present in any of the fully sequenced 
genomes (see figure 3). In practice, one may construct phylogenetic profiles using both the 
presence of orthologs or simply homologs as the criteria. Proteins with similar phylogenetic 
profiles are effectively co-evolving, since they are often found together in organisms. It is not 
surprising therefore to find that they are usually members of cellular complexes or proteins 
that participate in the same biological process.  
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Figure 3. Phylogenetic Profiles Provide a Method for Identifying Co-evolving Genes 
 

 

 
Note: The figure displays a schematic of the construction of phylogenetic profiles from four genomes. 

Homologs of the genes in the starting genome (E. coli) are identified in the three other genomes (S. 
cerevisiae, B. burgdorferi and H. pylori). The presence of a homolog is represented with a one and 
the absence with a zero. The phylogenetic profiles are then clustered and pairs of genes with 
similar profiles are identified. In this example E. coli proteins P2 and P7 are identified as being 
linked, and likely co-evolving, because of their similar profiles. 
 
Several metrics are available to measure the similarity of two phylogenetic profiles. The 

simplest is the computation of the hamming distance: the number of bits that differ in two 
binary profiles. However, it has been shown that one obtains more accurate estimates of 
profile similarity by using either the hypergeometric distribution (Wu 2003b) or mutual 
information (Date 2003). To establish the accuracy of a metric one typically uses a receiver 
operator characteristic (ROC) curve to measure the number of true positive versus false 
positive interactions using a set of known interactions as a benchmark (see figure 4). In this 
case, proteins that are known to participate in the same biological process are considered true 
positives while those that are not are false positives. 
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Figure 4. Receiver Operator Characteristic (ROC) Curves are Used 
to Assess the Accuracy of the Various Methods that are Used 

to Find Pairs of Functionally Linked Proteins 
 

 
Note: For each of the four methods we first rank order protein pairs by their statistical significance (see 

main text). We then measure the number of true positive versus false positive pairs as a function of 
rank using a set of known interactions as a benchmark. In this figure, true positive pairs are those 
for which both proteins are annotated in the same KEGG pathway and false positive are those 
annotated in different pathways. The diagonal line represents a random selection of protein pairs. 
The fact that the measured curves are above the diagonal random curve suggests that the methods 
are detecting more true positive pairs than false positive ones. 
 
In figure 5 we show an example of a protein network that is constructed using 

phylogenetic profiles. In this case the similarity of the phylogenetic profiles was established 
using the hypergeometric distribution and only those pairs that were deemed statistically 
significant were drawn as edges. The network represents a subgraph of all proteins that are no 
more than three edges removed from fliM (in box with double lines), a component of the 
Escherichia coli flagella.  
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Figure 5. The Figure Displays a Network of Genes with Similar Phylogenetic Profiles 
 

 
Note: The network is constructed starting with the E. coli fliM gene and then adding all other genes that 

are no more than three edges removed. The network includes many flagellar genes as well as genes 
involved in the chemosensing signaling cascade, all of which are involved in cell motility or 
chemotaxis. 
 
This graph illustrates how proteins that participate in the same biological process tend to 

have similar phylogenetic profiles. We see that the proteins with profiles most similar to fliM 
are the other components of the E. coli flagella. We also see in the lower right part of the 
graph that several genes that are part of the environmental sensing apparatus (chemosensing) 
are also connected to theses genes. It is not surprising that proteins that are responsible for 
chemosensing would co-evolve with flagellar proteins since they are all involved in the 
process of cellular motility, or chemotaxis. 

The clustering of proteins on the basis of the similarity between their phylogenetic 
profiles is significantly different from the clustering of proteins based on their sequence 
similarity, because the proteins within a phylogenetic profile cluster may share no sequence 
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similarity between themselves. Thus, these profiles can be used to link together proteins that 
are not homologous to each other, yet participate within the same biological process. 

 
 

Predicting Interactions of Paralogous Proteins 
 
As we saw in the previous section, the study of protein co-evolution yields clues about a 

protein’s interactions and functions. However, using phylogenetic profiles it is difficult to 
discern subtle differences in the evolution of paralogs. Paralogs are homologous proteins that 
have emerged by duplication within a species and would necessarily have very similar 
phylogenetic profiles because of their homology, even though they may have evolved to 
perform slightly different functions. In order to study the subtle differences in interactions 
and function between paralogs it is therefore necessary to more completely describe their 
evolution using standard evolutionary distance estimation techniques. 

In order to estimate the evolutionary distance within a group of homologous proteins, one 
must first construct a multiple sequence alignment. As we noted in section 3.2, this may be 
accomplished using the ClustalW program (Higgins 1994). Once the multiple alignment has 
been built it is possible to estimate the evolutionary distance between any two sequences 
using the alignment score. One use of this information is to deduce the different interacting 
partners of paralogs by comparing the distance matrices of two protein families that are 
known to contain interacting pairs.  

One might imagine that if two proteins interact, the evolution of one might be correlated 
with the other. For instance, mutations that occur on a ligand might be compensated by 
mutations to its receptor in order to maintain the ligand-receptor binding affinity. This 
phenomenon has in fact been demonstrated in the case of chemokines and their associated 
receptors (Goh 2000, Goh 2002). By correctly aligning the distance matrices of ligands and 
ligand receptors using Monte Carlo techniques it is possible to partially reconstruct which 
ligand is likely to bind which receptor (Ramani 2003). 

 
 

Gene Neighbors 
 
Genome sequences tell us not only which genes are coded within them, but also where on 

the genome the gene is located. Knowledge of the position of genes on a genome allows us to 
identify which pairs of genes are frequently coded next to each other across multiple bacterial 
genomes. We will refer to these pairs as gene neighbors. It has been observed that gene 
neighbors often code for proteins that are involved in the same biological process and 
therefore the computation of gene neighbors complements the use of phylogenetic profiles 
and protein fusions to study protein functions (Tamames 1997, Dandekar 1998, Overbeek 
1999).  

The likely reason that two genes are found nearby in multiple genomes is that they are 
members of a conserved operon. Operons are sequential genes on the same DNA strand that 
are transcribed as a single unit and are primarily found in prokaryotes. The genes within a 
bacterial operon are therefore transcriptionally co-regulated. Typically bacterial operons have 



Matteo Pellegrini and Thomas G. Graeber 178 

evolved to contain genes that participate within the same biological process, allowing the 
organism to coordinately regulate this process at the level of transcription.  

Because of the conservation of operons across bacteria, and the functional relationships 
between genes within an operon, it is possible to use the analysis of gene neighbors to study 
protein functions. It has been shown that the gene neighbor analysis, when combined with 
conventional homology based methods, yields functional information on the biological 
process of the vast majority of genes encoded in newly sequenced genomes (Selkov 2000). 

The study of gene neighbors can be used to both study gene functions and to reconstruct 
the operon structure of particular bacteria. Several groups have applied these methodologies 
to reconstruct in great detail the full operon structure of E. coli (Salgado 2000, Ermolaeva 
2001). In the near future, this in depth knowledge of operon structures is likely to be 
deciphered for all fully sequenced microbes, leading to more sophisticated models of bacterial 
transcriptional regulation. 

 
 

EXPRESSION METHODS 
 
 

Expression Platforms 
 
As a result of remarkable developments during the past few years, it is now possible to 

measure the concentrations of nearly every mRNA within a cell. There are two primary ways 
to accomplish this. The first is by sequencing short fragments of mRNA (Velculescu 1995, 
Brenner 2000) and counting the number of copies of a particular gene. Although these 
techniques are useful for identifying which genes are being transcribed within a cell they are 
not optimal for estimating transcript abundances. 

The second and more popular technique involves hybridizing fluorescent mRNA to 
complementary sequences that are arrayed on a chip, and then estimating the concentrations 
by the fluorescence intensity. Over the past few years gene chips have become a standard tool 
in genomics research. Several different techniques have been used to manufacture gene chips 
including photolithography to synthesize short oligonucleotides on an array (Fodor 1993), ink 
jet printers to attach cDNA to a glass slide (Schena 1995) and ink jet printers to synthesize 
short oligonucleotides on an array (Hughes 2001). In each case, it is now possible to measure 
10,000 or more different genes per chip, making expression microarrays the most advanced 
form of molecular profiling to date. 

 
 

Clustering Techniques 
 
Typically, the expression levels of the genes within a cell are measured under varying 

conditions. For instance, one may measure the concentrations of yeast genes at different times 
during the cell division cycle (Spellman 1998), in different yeast strains where certain genes 
have been knocked out (Hughes 2000) or when drug-like compounds are added to a cell 
(Wilson 1999). The result is that each gene has an associated expression vector that describes 
its concentrations in the cell under different experimental conditions. Various techniques 
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discussed below have been developed to use this information to study the function of genes 
and the proteins for which they code. 

In other cases the different experimental conditions of measured samples may not be 
fully known. For example, gene array data may be collected for various patients whose 
disease status is initially unknown. By analyzing the data it is possible to categorize the 
samples into disease and non-disease states or disease sub types. This type of diagnostic has 
been shown to be useful in diagnosing the cancer subtype or disease aggressiveness for 
individual patients (Shipp 2002). 

One of the most common forms of analysis to study gene functions and experimental 
categories involves the clustering of gene expression vectors. It has been found that genes that 
cluster together are likely to code for proteins that function in the same biological process. 
Therefore, gene expression clustering may be used in a manner very similar to that of the co-
evolutionary techniques discussed above to assign approximate functions to all the proteins 
within a cell using the observation that co-clustered genes often have similar functions.  

Similarly one may also cluster experiments rather than genes. Just as in the case of genes, 
experiments within the same cluster are likely to share common properties. For instance a 
cluster of experiments collected from diverse individuals may contain patients with a similar 
disease sub type. 

In order to cluster expression data a measure of similarity between the expression vectors 
must first be determined. The most common metric used is the Pearson correlation 
coefficient, 
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although one may also use Euclidian distance or mutual information among others. 
A variety of approaches have been developed to cluster expression data based on the 

degree of similarity between expression vectors. The most popular is hierarchical clustering 
(Eisen 1998). This technique generates a dendrogram of gene relationships that may be 
visualized as a hierarchical tree (see figure 6). The dendrogram is generated in an iterative 
fashion by first selecting the two most similar expression vectors, linking them, and then 
treating them as a single expression vector when searching for the next most similar pair. This 
process is repeated until all expression vectors have been included in a single dendrogram on 
which the lengths of the branches represent the distance between vectors. Once the tree has 
been constructed, clusters are generated by selecting all groups in the dendrogram that are 
separated by no more than a threshold distance.  
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Figure 6. One of the Most Popular Techniques for Visualizing Gene Expression Data 
from Microarrays is Known as Hierarchical Clustering 

 

 
 

 
Note: In this figure we see a hierarchical cluster of data from yeast (Hughes 2001). The rows in the 

graph represent genes, while the columns represent experiments. The dendrogram on the right is 
constructed as described in the main text by successively linking together the two most similar 
genes. Therefore, neighboring rows contain genes with similar expression profiles. Hierarchical 
clustering is also performed on the experiments, so neighboring columns contain similar 
experimental conditions. Genes that are closely linked in the dendrogram tend to participate in the 
same biological process. 
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Another approach is K means clustering, where the data is partitioned into a 
predetermined number of clusters. In this method the cluster means are first selected at 
random. Each gene is assigned to the cluster mean that is most similar to itself. Once all the 
genes have been assigned to a cluster, new cluster means are computed. This process is 
iterated until the clusters no longer change. 

These techniques have been used countless times over the past few years to identify 
previously uncharacterized components of cellular pathways. As a typical example, 
microarray clusters were used to identify the components of a system for phosphate 
accumulation and polyphosphate metabolism (Ogawa 2000). In this case yeast cells were 
grown in various conditions that varied in their Pi concentrations. Genes that showed 
differential expression across these conditions were clustered. An analysis of these clusters 
revealed several genes that were previously unknown to participate in phosphate pathways, 
but proved to be components of these pathways once they were further experimentally 
characterized. This analysis also revealed insights into the role of polyphosphate metabolism 
that had previously been overlooked. Through the construction of yeast strains that lacked 
some of the key phosphate genes, the authors demonstrated that polyphosphate metabolism is 
an important mechanism by which yeast cells store intracellular phosphate. 

The ability to measure all gene expression levels within a cell offers biologists an entirely 
new approach to studying the cellular function of proteins without relying on sequence 
homology. As databases of gene expression arrays grow, this data will provide an important 
contribution to our efforts to study protein functions.  

Efforts are also underway to develop technologies to measure protein concentration 
levels in a high throughput fashion. However, it is more difficult to measure individual 
protein concentrations from a complex mixture of proteins than it is for mRNA. This is in part 
due to proteins having a diverse range of chemical properties whereas mRNA sequences have 
very similar hybridization properties independent of their particular nucleotide sequence. 

 
 

Transcriptional Networks 
 
Cells typically contain hundreds of transcription factors that affect the rate of 

transcription of most genes. Each of these factors may affect many genes that could in turn 
code for other transcription factors. The reverse engineering of a cell’s transcriptional 
network remains one of the major challenges for 21st century biology. 

There are various techniques that have been developed in attempts to study transcription 
networks. Since transcription factors typically bind to promoter regions of genes that contain 
nucleotide sequence motifs specific for each transcription factor, it is in principle possible to 
study the network by searching for all motifs in a genome. Several programs have been 
developed to search for these motifs, among which are MEME (Bailey 1995) and the Reverse 
Gibbs Sampler (Thompson 2003). However, because the regulatory DNA motifs to which a 
transcription factor binds are generally short and can occur at random throughout a genome, 
not all promoter sequences matching a motif are functional. A functional motif is one that 
when mutated effects the transcription of nearby genes. It has proven difficult to 
computationally predict which motifs are functional and thus the elucidation of transcriptional 
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networks generally requires additional experimental information than just the promoter 
sequences.  

A complementary approach to understanding transcription networks involves the 
experimental identification of which promoters are actively bound by specific transcription 
factors. These interactions have recently been mapped within the yeast Saccharomyces 
cerevisiae (Lee 2002). The strategy used to map the biding sites of yeast transcription factors 
consisted of first adding myc epitope tags into the genomic sequence of the COOH terminus 
of each regulator. Chromatin immunoprecipitation was then used to identify the DNA 
sequences bound to the transcription factors. In total the authors were able to identify 3985 
high confidence interactions, which reveal a complex network of transcriptional regulation.  

Since gene expression arrays directly probe transcriptional regulation, they can also be 
used to aid in the reconstruction of transcriptional networks. A first step involves asking 
whether the co-expressed genes share common cis regulatory sequences in their upstream 
promoters. Clustering genes and aligning their respective promoters has allowed scientists to 
both verify known motifs as well as identify previously unknown ones (Hughes JD 2000, 
Bussemaker 2001).  

A more complex approach to the reconstruction of transcriptional networks from 
expression data involves the use of Bayesian networks (Friedman 2000). These networks 
model the multidimensional probability distribution of gene expression levels by determining 
the dependencies between genes in the form of a directional acyclic network. Once these 
models are constructed they allow one to qualitatively study the connections inherent in the 
transcriptional network as well as in principle to predict the outcome of perturbing a 
component of the network.  

 
 

PROTEIN INTERACTION METHODS 
 
 

Experimental Techniques to Measure Protein Interactions 
 
Functional interactions between proteins can be defined in many ways. For example, two 

proteins that sequentially modify a metabolite are functionally related. Of course, many 
functional interactions also involve direct physical interaction. 

Several experimental techniques have been developed to directly probe protein 
interactions within a cell in a high throughput fashion. The two-hybrid technique is based on 
the construction of a bait and a prey protein that are fused to two halves of a transcription 
factor (Fields 1989). If the bait and the prey protein interact the transcription factor is 
reconstituted and its activity is measured though the activation of the transcription of a 
reporter gene. This approach is a specific example of a general class of protein fragment 
complementation assays (PCA). As in the two-hybrid approach, in PCAs half of a reporter 
protein is fused to protein A and the other half to protein B. If protein A and B interact, the 
two halves of the reporter protein reconstitute to restore its activity. The assay then reads out 
the activity of the reporter protein (Pelletier 1998). 

Protein interactions may also be directly monitored using various co-purification 
techniques. A protein may be directly purified using a specific antibody or the protein may be 
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tagged with another protein or a small molecule tag and then affinity purified. In all cases, if 
the selected protein interacts with other proteins these will be co-purified. The identity of the 
interacting partners may be deduced using mass spectrometry among other techniques (Gavin 
2002).  

Protein microarrays are also emerging as a promising tool to directly observe protein 
interactions in a parallel fashion. Protein chips are the protein counterpart of DNA chips 
which are widely used to measure gene expression levels. In a protein chip each spot consists 
of a different purified protein. By studying the binding of proteins labeled with fluorescent 
molecules to these chips it is possible to reconstruct protein interaction patterns (Zhu 2001). 

 
 

Protein Interaction Databases 
 
The data reported from experiments that probe direct protein-protein interactions has 

been catalogued within various databases such as the Database of Interacting Proteins (DIP) 
(Xenarios 2002, see Table 1) and the Biomolecular Interaction Network Database (BIND) 
(Bader 2003). These databases contain interactions measured in many different organisms, 
however the majority of these interactions involve yeast proteins. Currently there are about 
15,000 interactions between Saccharomyces cerevisiae proteins reported in these databases. 
When viewed as a network these relationships represent a comprehensive view of protein 
interactions within yeast, and thus far involve about two thirds of the yeast proteome.  

 
Table 1. Statistics for the Database of Interacting Proteins 

 
Number of proteins 7141 
Number of organisms 104 
Number of interactions 18670 
Number of distinct experiments describing an interaction 22918 
Number of articles used to build database 2507 

 
Although it is not known how many direct physical interactions between yeast proteins 

will ultimately be measured, it is found that in comprehensive two-hybrid screens each 
protein engages in an average of only three or four interactions (Uetz 2000). If this is in fact 
an accurate estimate of the true number of interactions per protein we conclude that the 
current catalogue will not grow by many multiples in the future. 

 
 

Prediction of Protein Function from Interaction Networks 
 
Knowledge of a protein’s interactions can shed a great deal of light on its function. It 

may, for instance, allow one to understand the substrates of an enzyme or the complex in 
which a protein functions.  

Protein interaction networks may also be used to assign proteins to broad biological 
processes. The simplest algorithm that has been implemented to exploit protein networks for 
functional annotation is a voting scheme: a protein is assigned to the biological process that is 
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most often present among its interacting partners (Schwikowski 2000, Hishigaki 2001). This 
simple scheme has been found to assign proteins to biological processes with approximately 
50% accuracy. 

More complex algorithms for assigning proteins to biological processes using protein 
interaction networks have also been recently proposed. One example involves the 
minimization of a score function: 
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where Jij is the adjacency matrix for the protein interaction network and the σ’s are the 

binary biological process vectors with entries of 1 if the protein is involved in a particular 
biological process and 0 otherwise (Vazquez 2003). Minimizing this energy function has been 
shown to yield improved predictions with respect to the simpler voting approach. 

 
 

COMBINED METHODS 
 
The methods described above exploit different properties of proteins to gain functional 

insights. Often, these properties generate information on different sets of proteins. It is 
therefore useful to combine these methods to gain a more complete picture of protein function 
(Eisenberg 2000, Galperin 2000, Teichman 2000, Huynen 2000, Aravind 2000).  

Databases have been constructed to combine the evolutionary based methods described in 
section 4 for deducing protein couplings (Pellegrini 2001, Mellor 2002, von Merring 2003). 
These methods include phylogenetic profiling, protein fusion analysis, gene neighbor analysis 
and the reconstruction of operons. To date these have been mostly applied to bacteria where 
the existence of operons and numerous fully sequenced genomes renders the methods more 
successful. It has been shown that these networks may be used to accurately assign biological 
processes to uncharacterized genes. 

One approach to combine the above techniques with expression data treats every pair-
wise prediction as a link between two proteins (Marcotte 1999b). That is, proteins are linked 
if they have similar phylogenetic profiles or expression profiles, or if they are neighbors on 
multiple genomes or if they are fused within a Rosetta stone protein. By studying the graph of 
links for yeast, it is possible to infer approximate functions for most of the uncharacterized 
genes coded by this genome. 

Another approach combines the phylogenetic profiles and expression profiles into a 
single data structure (Pavlidis 2000). By concatenating the binary phylogenetic profiles with 
expression vectors one may construct a single vector for each gene. Support Vector 
Machines, trained on annotated genes, are then used to classify these vectors into functional 
categories. The results of this analysis demonstrate that these combined data structures are 
able to recover functional information for a greater number of genes than any one of the 
methods alone. 

 
 



Computational Methods for Protein Function Analysis 185 

CONCLUSION 
 
The advent of whole-genome sequencing and mRNA profiling, has created new 

opportunities for computational biologists. It is now possible to utilize information from 
comparative genome analysis to reconstruct a protein's evolution, and hence gain insights into 
its function. The ability to probe the expression levels of every gene within a genome is also 
revolutionizing our ability to understand transcriptional regulation and the function of co-
regulated proteins. 

In the future, these insights will be used by computational biologists to model cellular 
pathways in great detail (Tomita 1999). It is already possible to begin to model 
developmental pathways (Von Dassow 2000), metabolic pathways (Edwards 2000) and signal 
transduction pathways (Schoeberl 2002) and compare the predictions of these models to 
experimental results. In the next few years there will undoubtedly be exciting new approaches 
that combine genome wide experimental measurements with complex mathematical 
modeling, to gain an unprecedented understanding of protein function and cellular biology. 
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