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ABSTRACT
Finding the interacting pairs of proteins between two differ-
ent protein families whose members are known to interact is
an important problem in molecular biology. We developed and
tested an algorithm that finds optimal matches between two
families of proteins by comparing their distance matrices. A
distance matrix provides a measure of the sequence similarity
of proteins within a family. Since the protein sets of interest
may have dozens of proteins each, the use of an efficient
approximate solution is necessary. Therefore the approach
we have developed consists of a Metropolis Monte Carlo
optimization algorithm which explores the search space of
possible matches between two distance matrices. We demon-
strate that by using this algorithm we are able to accurately
match chemokines and chemokine-receptors as well as the
tgfβ family of ligands and their receptors.
Contact:matteope@proteinpathways.com

1 INTRODUCTION
Over the past few years advances in sequencing techno-
logy have allowed scientists to determine all the genes that
are coded by an organism’s genome. In order to character-
ize the function of these genes it is necessary to elucidate
their interactions. Over the past few years, both experi-
mental and computational approaches have been developed to
study protein–protein interactions. Examples of experimental
approaches include the yeast two hybrid technique, immuno-
precipitation and tandem affinity purification tags (Uetz et al.,
2000;Gavin et al., 2002). These have been extensively applied
to yeast proteins to determine thousands of interactions.
Computational techniques to elucidate protein interactions

include the use of phylogenetic profiles, conserved oper-
ons, protein fusions and correlated mutations to infer protein

∗To whom correspondence should be addressed at 21111 Oxnard Blvd,
Woodland Hills CA 91367, USA.

interactions (Pellegrini et al., 1999; Overbeek et al., 1999;
Marcotte et al., 1999; Pazos and Valencia, 2002). Although
these methods successfully link proteins that participate in the
same cellular processes, these links represent both direct phys-
ical interactions and indirect interactions mediated by other
molecules. Furthermore, these techniques often link protein
families together, and do not allow one to determine which
member of one family interacts with which member of the
other. It is therefore useful to extend these approaches with
new methodologies to probe only direct protein interactions
and to find the correct matches between the members of two
interacting families.
The approach we present here consists of searching for

protein interactions by finding the correct matches between
the leafs of two phylogenetic trees of families of interacting
proteins. We assume that two interacting proteins evolve in a
correlated fashion, and therefore reconstructing phylogenies
allows us to infer interactions. In support of this assump-
tion, it has previously been shown that the phylogenetic trees
of various protein families show correlated evolution (Goh
et al., 2000; Goh and Cohen, 2002). Furthermore, it has also
been shown that duplicated genes in yeast tend to preserve the
same sets of interactions for several million years, although
eventually, after 200 million years, these patterns disappear
(Wagner, 2001).
In support of the notion that gene phylogenies are use-

ful for reconstructing interactions, we show the trees of two
interacting protein families in Figure 1. These trees contain
the members of the tgfβ ligands and their receptors. To illus-
trate qualitatively that interacting members tend to co-evolve
we have colored ligands and their respective receptors in
the same colors, thus illustrating the similarities between the
topologies of the two trees.
The algorithm we present here identifies interacting pairs

of proteins between two families, where the members of
each family are related by sequence similarity. Identifying
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Fig. 1. Phylogenetic trees of the tgfβ ligands (a) and their receptors
(b). We have used matching colors for ligand–receptor pairs that are
experimentally known to bind. The similar topologies of the trees
demonstrate that the relative position of colored proteins are sim-
ilar in both trees [e.g. the tgfβ ligands and activin ligands are nearby
in (a) as are the respective tgfβII receptors and activinII receptors
in (b)].

matches between two families allows us to identify poten-
tial interactions. The evolutionary relationships between the
members of a protein family are reflected by a distancematrix.
The distance matrix has dimensions N × N , where N is the
number of proteins in a family, and the (i, j) entry contains
the evolutionary distance between protein i and protein j .
We have developed an algorithm to find the ‘best fit’

between two distance matrices by rearranging the rows and
columns of one matrix in order to maximize the similarity
between the two distance matrices. We initially assume a one-
to-one correspondence between proteins in the first data set
and proteins in the second data set, an assumption that is later

removed. Because a protein family may contain 100 or more
proteins, there are potentially 100! ≈ 10158 permutations to
examine. Since it is not feasible to conduct an exhaustive
search, we employ an efficient approximate solution to solve
the problem.
In this paper we report the application of our algorithm to

match two families of ligands with their respective receptors:
chemokines and tgfβ ligands. Chemokines are proteins that
control diverse biological processes by activating G-protein-
coupled receptors on the cell surface. These processes include
angiogenesis, hematopoesis and organogenesis among many
others. Understanding the interactions between chemokines
and their receptors is an important first step in understanding
the biology of these processes.
The tgfβ family of ligands and receptors contains a wide

variety of proteins that are important in cellular differentiation
and proliferation processes. Well-characterized members of
the family include tgfβ, activins and the anti-Mullerian hor-
mone. Mutations within these ligands have been implicated
in a broad range of diseases such as cancer, diabetes, muscu-
lar dystrophy and hypertension. Bone morphogenic proteins
(BMP) are other members of this family that induce bone
formation by, among other pathways, stimulating osteocalcin
in osteoblats.

2 METHODS
2.1 Experimentally derived interaction data sets
Our algorithm is applied to sets of chemokine ligands and
receptors and tgfβ ligands and receptors. Experimentally
determined interaction data between chemokines and their
receptors in Table 1 is taken from the Database of Ligand–
Receptor Pairs (DLRP) (Graeber and Eisenberg, 2001).
Experimentally determined interaction data between tgfβ lig-
ands and their receptors is contained in Table 4 (Massague
and Chen, 2000; Massague, 1998).

2.2 Calculation of distance matrices
We obtained the proteins associated with the human
chemokines and tgfβ ligands, along with their associated
receptor families from Genbank. Using ClustalW (Higgins
et al., 1994) we first aligned the four protein families and then
calculated the resulting distance matrices. The units of the
distance matrix correspond to the percent difference in amino
acid sequence.

2.3 Methodology
Given two distance matrices, we desire to find a ‘best fit’
between the two corresponding sets of protein sequences. A
Monte Carlo method is used to select moves that maximize
the similarity of one matrix with the other. After maximizing
the fit we obtain the ‘best’ couplings between the two sets of
proteins. Below we describe the algorithm in detail.
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Table 1. Chemokine ligands and their receptors (DLRP) (Graeber and
Eisenberg, 2001)

Chemokines Receptors

GRO1 IL8RB
GRO2 IL8RB
GRO3 IL8RB
IL8 IL8RA, IL8RB
MIG GPR9
PPBP IL8RB
SCYA1 CCR8
SCYA2 CCBP2, CCR1, CCR2
SCYA3 CCR1, CCR5
SCYA4 CCR1, CCR5, CCR8, GPR9
SCYA5 CCBP2, CCR1, CCR3, CCR4, CCR5
SCYA7 CCBP2, CCR1, CCR2, CCR3, CCR5
SCYA8 CCBP2, CCR1, CCR2, CCR3, CCR5
SCYA11 CCBP2, CCR3, CCR5, GPR9
SCYA13 CCBP2, CCR1, CCR2, CCR3, CCR5
SCYA14 CCBP2, CCR1
SCYA15 CCR1, CCR3
SCYA17 CCR4, CCR8
SCYA19 CCR7
SCYA20 CCR6
SCYA21 CCR7, GPR9
SCYA22 CCR4
SCYA23 CCR1
SCYA24 CCR3
SCYA25 CCBP2
SCYA26 CCR3
SCYA27
SCYB5 IL8RA, IL8RB
SCYB6 IL8RA, IL8RB
SCYB10 GPR9
SCYB11 GPR9
SCYB13 BLR1

Let X and Y be two distance matrices. The measure we
consider is the correlation coefficient r ∈ [−1, 1] given by

r(X,Y )

:=
∑N−1

i=1
∑N

j=i+1(Xij − X)(Yij − Y )
√∑N−1

i=1
∑N

j=i+1(Xij − X)2
√∑N−1

i=1
∑N

j=i+1(Yij − Y )2

where X is the mean of all Xij -values and Y is the mean of
all Yij -values. When using the correlation coefficient, we are
looking to maximize r , a unit-less measure. Our algorithm
compares the upper-left N × N sub-matrix of X to all of Y ,
ifX is larger than Y . When computing r(X,Y ), we only look
at the entries of the larger matrix that are paired with proteins
in the smaller set, these being the first N proteins in X.
The approach described so far assumes that eachmember of

one family matches a single member of the interacting family.
However, as we see in Tables 1 and 4 this assumption does
not hold for the known ligand–receptor interactions, where

multiple ligands bind multiple receptors. Therefore to more
accurately capture the known ligand–receptor pairings, we
find clusters of proteins that match between each data set and
remove the one-to-one assumption.
To cluster proteins within a distance matrix we use the fol-

lowing technique known as Unweighted Pair Group Method
with Arithmetic mean (UPGMA): (I) locate the smallest entry
(i, j) in the matrix X (in the case of a tie, choose arbitrarily),
(II) combine rows i and j and columns i and j by averaging
their values (replaceXi· andX·i with (Xi· +X·i )/2) and (III)
delete row j and column j . At the end of this process the
distance matrix ends up one dimension smaller.
The ‘cluster step’ just described can be used for two pur-

poses. First, we can compare two different sized matrices by
shrinking the larger one by repeatedly applying the cluster
step until the data sets have the same dimension. Recall that
under the one-to-one assumption, wewere comparing a subset
of the larger matrix with the entire smaller matrix which leads
to a forced omission of data (due to a number of unused rows
and columns). However, using the cluster steps allows the
program to create one-to-many correspondences that include
all of the proteins in the two families.
Moreover, we can also cluster both data sets to account

for many-to-many relationships between the two families.
This is important since as we see in Table 1, chemokines
and chemokine receptors have many-to-many relationships.
When performing this clustering, we compute a predeter-
mined ‘cutoff’ for each matrix to decide when to stop the
process of clustering. We take the cutoff for a matrix to be
one standard deviation below the mean of the non-zero ele-
ments in the matrix. We simultaneously perform cluster steps
on bothmatrices until the lowest entry in eithermatrix is above
the cutoff for that particular matrix.
Once the clustering is complete, a Monte Carlo method is

used to find the best fit between the two preprocessedmatrices.
The approach consists of an iterative improvement in the fit-
ness function by randommoves in the search space. Amove is
a randomly chosen change in the configuration of the system
(Holm and Sanders, 1993). In our method, a move consists
of choosing two indices i and j uniformly at random and
then simultaneously swapping rows i, j and columns i, j . To
decide whether such a move σ is accepted or rejected, we
employ theMetropolis criterion (Metropolis et al., 1953). The
conditional probability P(σSi |Si) that a move from Si to σSi

is accepted as the new configuration is

P(σSi |Si) :=
{
1 if "E ≤ 0,
e−"E/T if "E > 0,

where "E (the ‘change in energy’) is the change in chosen
measure of goodness of fit across the move and T is the ‘tem-
perature’ of the system. With r as defined above, the change
in energy is

"E := r(Xi ,Y ) − r(σXi ,Y ).
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Temperature T is the only parameter that needs to be spe-
cified when using this method. In order to help the random
moves to settle into a minimum, the temperature is decreased
according to an annealing schedule. To find an effective and
efficient temperature function, we studied the heat capacityC

of different systems representative of our problem. The heat
capacity of a system is

C := dE
dT

= 1
T 2

(
E2 − E

2) .

To calculate C, we set the temperature constant at differ-
ent levels and surveyed the energies of accepted moves. We
hoped to observe a sharp increase in heat capacity when the
temperature reached a critical valuewhere the procedure could
first be trapped in a local minimum. Such a sharp increase in
C would be the result of the process having a tendency to
fall into different minima and being trapped causing a large
increase in the variation of energies. We did this study on sys-
tems varying in matrix size and degree of fit; specifically, we
tested perfectly correlated matrices and completely random
matrices. Each test using r consistently had a peak at about
the same temperature, approximately 0.001.
Using the information from the heat capacity survey, we

constructed a piecewise linear temperature function that
makesmanymoves in the critical temperature range in order to
minimize the likelihood of being trapped in a local minimum.
When the desired number of iterations (accepted or rejected)

of theMonte Carlo procedure have been completed so that the
optimal pairings S between the two data sets are in hand, the
program calculates the overall ‘goodness’ of the pairings S

by comparing it to a sampling of random sets of pairings so
as to approximate a z-score for S. In order to find z, a vector
of energies Erand for random pairings between the data sets is
first computed. The z-score is then

z := Erand − ES

σErand

where σErand is the standard deviation of Erand,Erand is the
mean of Erand, and ES is the energy of S. A p-value can then
be computed from

p = erfc(|z/
√
2|)√

2
where erfc is the standard complement error function. This
p-value is interpreted as the probability of randomly finding a
pairing that has an equal or better fit than the pairing S found
by theMonte Carlo optimization (Goh et al., 2000). We report
the values of the z-score and p for various distance matrices
in Tables 2, 3 and 5.
We also test the goodness of individual pairings. To find

this value, we calculate the correlation coefficient between
the two row vectors that correspond to the two halves of the
pairing. Pairings are output in decreasing order of individual

Table 2. Program-discovered one-to-one matches between chemokine
receptors and ligands (50k iterations)

Receptors r = 0.983

Ligands Match correlation

IL8RA SCYB5a 0.981
IL8RB SCYB6a 0.975
CCR2 SCYA8a 0.967
CCR3 SCYA15a 0.967
CCR5 SCYA13a 0.946
CCR1 SCYA3a 0.892
CCR4 SCYA5a 0.886
CCR8 SCYA22 0.865
BLR1, CXCR5 SCYB10 0.639
CCR6 IL8 0.506
CXCR3, GPR9 SDF1 0.474
CCR7 SCYB13 0.375
CSCR4 SCYB11 0.318
CCBP2, CCR9 SCYA20 0.150

Z-scoreb 4.322
p-value 1.0933× 10−5

aCorrect pairings from Table 1.
bThe Z-score of obtaining a correlation of 0.983 by chance.

correlation to suggest to the user which pairings are more
likely to be true positive matches.

3 RESULTS AND DISCUSSION
3.1 Results
In the Monte Carlo phase, our MatLab Release 12 (9-22-
2000) program can perform 10 000 iterations on a pair of data
sets with 100 proteins each in about 25 s on a 733MHz Intel
Pentium III PC with 192MB RAM. For 100 000 iterations,
about 230 s are needed.
In the chemokine set we are working with, there are 63

known existing matches. We first tested the data under the
one-to-one assumption. In this case the program is limited to
finding only 14 possible pairings, this being the number of
proteins in the smaller matrix. The best matches found with
50 000 iterations are shown in Table 2. Our program arrives
at r = 0.983 between the two aligned distance matrices, with
seven correct matches and a z-score of 4.1 for observing this
many matches by chance.
Wenext computed the chemokine–receptor pairings in these

data sets with our clustering technique enabled. Results for r
are shown in Table 3. The program achieves r = 0.946, with
13 correct matches and a z-score of 3.2 for observing this
many matches by chance.
Since these data sets are reasonably small, we did an

exhaustive search to determine whether or not our program
was finding the optimal pairings. Using the matrices attained
by clustering, the exhaustive search found the same optimal
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Table 3. Program-discovered cluster matches between chemokine receptors
and ligands (50k iterations)

Receptors r = 0.946
Ligands Match correlation

CCR3 SCYA24a 0.870
CCR1 SCYA11 0.869

SCYA2a
SCYA8a
SCYA13a
SCYA7a
SCYA1

CCR5 SCYA14 0.875
SCYA15
SCYA23
SCYA3a
SCYA4a
SCYA5a

IL8RA SCYB6a 0.825
SCYB5a
GRO1
GRO2
GRO3
PPBP

CCR4 SCYA26 0.804
CCR2 SCYA21 0.765

SCYA19
CCR8 SCYA22 0.730

SCYA17a
CXCR3, GPR9 SDF1 0.715
IL8RB IL8a 0.681
BLR1, CXCR5 MIG 0.661

SCYB10
SCYB11

CCBP2, CCR9 SCYA25a 0.625
CCR6 SCYB13 0.397
CXCR4 SCYA27 0.331
CCR7 SCYA20 0.327

Z-scoreb 3.813
p-value 9.7079× 10−5

aCorrect pairings from Table 1.
bThe Z-score of obtaining a correlation of 0.946 by chance.

pairings for r as were achieved by our program. However the
exhaustive search requires about 40 million steps, while the
Monte Carlo search is able to find the same solution in only
50 000 steps.
To graphically demonstrate the effect of the Metropolis

MonteCarlo optimization, weplotted the distancematrices for
the clustered chemokines and the chemokine receptors before
and after our method is applied (Fig. 2). From the graph it is
clear that the matrices dramatically increase in similarity after
the Metropolis Monte Carlo optimization.
We also computed the tgfβ pairings using the clustering

technique. As seen in Table 4, there were 18 known matches,
however our program is limited to finding a maximum of 11
matches (the number of proteins in the larger data set of the

Table 4. Tgfβ ligands and their receptors (Massague and Chen, 2000;
Massague, 1998)

Receptors Ligands

TGFBRII TGFB-1, TGFB-2, TGFB-3
ACTRIIa ActivinβA, ActivinβB
ACTRIIb ActivinβA, ActivinβB
AMHR Anti-Mullerian hormone
BMPRIa BMP-2, BMP-4, BMP-7, GDF-5
BMPRIb BMP-2, BMP-4, BMP-7, GDF-5
SAX Dpp
TKVR Dpp

Table 5. Program-discovered cluster matches between tgfβ receptors and
ligands (50k iterations)

Receptors r = 0.902
Ligands Match correlation

TGFBRII tgfb2a 0.9146
tgfb3a
tgfb1a

BMPRIa gdf5 0.9133
AMHR Anti-Mullerian Hormonea 0.9055
BMPRIB bmp2a 0.8990

bmp4a
ACTRIIa ActivinβAa 0.8974
ACTRIIb ActivinβBa 0.8922
SAX bmp3 0.8650
TKVR bmp10 0.8620
ACTRII Dpp 0.8564
TGFBRI bmp7 0.4677

bmp6
BMPRII gdf8 0.25671

Z-scoreb 4.2474
p-value 1.5292× 10−5

aCorrect known pairings from Table 4.
bThe Z-score of obtaining a correlation of 0.902 by chance.

correct pairings). First, we only included proteins with known
pairings to explore the accuracy achieved on these data sets.
We recovered 10 out of 11 possible matches with r = 0.965
and a z-score of 3.3 for obtaining thismany correct pairings by
chance. Next, we added proteins that had no known pairings
in order to predict matches. The results are shown in Table 5.
The program found an r = 0.902 between the matrices, with
eight correct matches out of 11. The z-score for observing this
many matches by chance is 4.3.
With the chemokine set, all of the runs under the one-to-one

assumption arrive at their respective solutions in about 185 s.
With the clustering method, the runs take about 188 s each.
The performance is about 3 × 10−7 s/proteins2 iter. We did
additional tests on the efficiency of the program by examining
the convergence of r with the clustering method from the tests
between the chemokine ligands and receptors. In each test,
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Fig. 2. A representation of the two distance matrices from the chemokine families with clustering before (r = 0.017) and after (r = 0.946)
the Metropolis Monte Carlo optimization. The darker the box, the lower the corresponding value in the matrix.

we ran the program 100 times with the chemokine set for
50 000 iterations. We find that all runs converge to the same
correlation.
As a control experiment, we also ran our program on

the family of tgfβ ligands and chemokine receptors, to see
whether we could correctly determine that there were no good
matches between these families, as we would expect from
experimentally derived interaction data. We found that the
program was able to align these two distance matrices with a
correlation of 0.84, which is lower than that achieved between
the tgfβ ligands and receptors (0.97 with known pairings and
0.90with additional familymembers) and the chemokines lig-
ands and receptors (0.98 for one-to-one matches and 0.95 for
clustered matches) distance matrices.
More significantly, we also found that the best pair-wise

match between a tgfβ ligand and a chemokine receptor was
0.76. As seen in Tables 2, 3 and 5, this value is lower than
the top matches found for both the chemokine–chemokine
receptor pairings and the tgfβ–tgfβ receptor pairings. In fact,
only 3 out of the 25 correct matches found in these tables have
a correlation less than 0.76.
Therefore, comparing the results of aligning the tgfβ lig-

ands to the chemokine receptors to those achieved between
the tgfβ ligands and receptors and the chemokine ligands

and receptors, we find that these two families generate lower
correlation coefficients between the distance matrices and
individual pairs of proteins. These results suggest that the
methodology presented here can discriminate, in most of
the cases examined here, between true and false positive
interactions.

3.2 Discussion
Previous approaches have used the experimentally known
matching of ligands and receptors to both evaluate the simil-
arity of the two trees as well as to infer which uncharacterized
ligands bind to which receptors (Goh and Cohen, 2002). To
accomplish this one must first have a set of experimentally
determined pairs of ligands and receptors. Then for each
ligand, a set of distances is computed to the ligands in the
experimentally determined pairs list. Similarly a set of dis-
tances is computed between each receptor and the receptors
in the experimentally determined pairs list, maintaining the
receptors and ligands in the same order from the pairs list.
A correlation between the distances of any ligand and any
receptormay then be computed. The receptors and ligandwith
higher correlation were shown to be more likely to interact
than those with low correlation.
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Although this approach is reasonable, it is more limited
than our approach for various reasons. First, this approach
requires prior knowledge of ligand receptor pairs, whereas
our approach does not. Secondly, it treats each ligand and
each receptor separately, whereas our methodology takes into
consideration the matching between all clusters of ligands
and all clusters of receptors simultaneously. However, due to
our limited experimental knowledge of ligand–receptor pairs,
it is difficult to quantitatively evaluate the different results
produced by these two approaches.
The results described above demonstrate that using our

simulated annealing approach we are able to recover about
half of the possible ligand–receptor interactions for both the
chemokine family of proteins and the tgfβ ligand–receptor
pairs. The actual number of interactions recovered is greatly
increased when we first cluster our protein families. This
technique allows us to more closely model the one-to-many
relationships found between the families that we explored.
It is important to note that our technique allows us to rank

order predicted interactions by amatch correlation. Therefore,
althoughhalf thematcheswepredict are incorrect according to
our current knowledge of interactions, the incorrect matches
tend to fall among low scoring matches. Therefore, if we
exclude the matches with low correlation, we in fact make
predictions with accuracies significantly greater than 50%.
Finally, it should be noted that many of our supposedly

incorrect matches may in fact be correct, but not yet exper-
imentally demonstrated. One example of such a case occurs
between the ligand SCYA11, or eotaxin, and receptor CCR1.
Even though this interaction is not reported in the DLRP, we
found that this ligand has been shown to bind the receptor
CCR1 (Gao et al., 1996), and therefore this match is cor-
rectly predicted by our approach. This finding suggests that
several other of our chemokine–receptor or tgfβ pairs may in
fact represent true biological couplings that have not yet been
discovered.
In conclusion, we have demonstrated that we can com-

putationally discover ligand–receptor pairs. As such, this
technique represents an addition to existing techniques that
use computational methods to discover protein–protein inter-
actions. In the future, we hope that these techniques motivate
the experimental validation of the many protein interaction
predictions that we are able to generate.
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