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Abstract
During the past decade remarkable new 
techniques for transcriptional profiling 
have been developed. These include tran-
scriptional profiling using hybridization 
microarrays as well as methods to sequence 
transcribed RNAs. No matter which tech-
nology is used, these experiments generate 
data on thousands of genes across multiple 
conditions and therefore the analysis of 
these data is often a daunting task. One of 
the most promising avenues for interpret-
ing large datasets of expression profiles 
involves pathway-based analysis. Although 
pathway analysis of expression data is a rel-
atively new field, many important advances 
have been made over the past few years. 
Below we outline some the most significant 
developments in this area of research.

Introduction
Pathways are collections of genes and pro-
teins that perform a well-defined biologi-
cal task. For instance, proteins that work to 
successively synthesize metabolites within 
a cell are grouped into metabolic path-
ways. Similarly, proteins that are involved 
in the transduction of a signal from the 
cell membrane to the nucleus are grouped 
into signal transduction pathways. These 
pathways have been established through 
decades of molecular biology research and 

are collected in a variety of public pathway 
repositories (Kanehisa et al., 2004; Ash-
burner et al., 2000).

Since the number of known pathways 
within cells is significantly smaller than 
the number of genes that is typically pro-
filed, the transformation of data from a 
gene-centric view to a pathways-centered 
one represents a dramatic reduction in the 
number of dimensions. Such a reduction 
allows a biologist to interpret and under-
stand the data in a manner that is not pos-
sible when it is viewed as a collection of 
individual genes.

Although pathway analysis of expres-
sion data is a relatively new field, many im-
portant advances have been made over the 
past few years. Below we outline some the 
most significant developments in this area 
of research. These include analyses that 
attempt to identify the pathways that are 
overrepresented among significantly per-
turbed genes in an experiment along with 
methods that attempt to identify pathways 
and networks of molecular interactions 
directly from expression data. Despite the 
fact that these analyses will undoubtedly 
continue to evolve rapidly over the next 
few years, they have already enhanced our 
ability to understand the biology that un-
derlies complex experiments.
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Term enrichment analysis
A typical analysis of microarray expres-
sion data generates a long list of genes that 
are significant according to some criterion. 
These may be, for example, genes that are 
differentially regulated in a ratio experi-
ment, or genes that are significant in an 
analysis of variance (ANOVA) of groups 
of samples. No matter how the list is gen-
erated, it is usually a daunting task to inter-
pret the underlying biology because these 
lists tend to contain hundreds of genes. 
In principle, one could search the litera-
ture for each gene in the list to attempt 
to uncover common relationships among 
them. However such an approach would 
inevitably require many hours of research 
without guaranteeing that the search was 
comprehensive.

Several tools have emerged to auto-
mate this type of analysis. These programs 
rely on a priori classifications of genes 
into biological function groups. The Gene 
Ontology (GO) Consortium (Ashburner et 
al., 2000) generates one of the most widely 
used of these classifications. GO terms are 
related to each other through a directed 
acyclic graph (DAG). That is, most terms 
have both parent and child terms. The 
parent terms are more general and inclu-
sive than the child terms. For instance, the 
parent term “ribonuclear protein complex” 
(GO id 0030529) has a child term “ribo-
some” (GO id 0005840). The ontology is 
separated at the highest level into three 
separate graphs that contain terms for bio-
logical processes, cellular components, and 
molecular functions. To date, GO repre-
sents one of the most comprehensive col-
lections of pathway annotations.

An example of an application that uses 
GO to automatically perform term enrich-
ment analysis is the Expression Analysis 
Systematic Explorer (EASE) (Hosack et 

al., 2003). This tool measures the overlap 
between a list of genes with GO biologi-
cal process categories. The significance of 
the overlap is calculated using the hyper-
geometric distribution to estimate the 
probability of finding at least the observed 
overlap by chance. As an example, the au-
thors computed the GO terms associated 
with a gene expression study by Kayo et 
al. (2001) on the influence of aging and 
caloric restriction to the transcriptional 
profile of skeletal muscle in rhesus mon-
key. They find that the terms computed 
with EASE (mitochondrion and electron 
transport) matched the terms Kayo et al. 
had found through a manual literature 
search. However, in contrast to the ap-
proximately 200 hours required for the lit-
erature search, EASE was able to perform 
the analysis in a few minutes.

Other applications that perform a 
similar analysis to EASE include GoMiner 
(Zeeberg et al., 2003), MAPPFinder 
(Doniger et al., 2003), FatiGO (Al-
Shahrour et al., 2004) and GoSurfer 
(Zhong et al., 2004). These programs dif-
fer in the type of gene identifiers that they 
recognize, the graphical display of the anal-
ysis results, the metric that is used to score 
the enrichment of terms, and the operating 
system that they work on.

There are many different identifiers 
that are used to denote genes: gene sym-
bols, Entrez gene identifiers, Affymetrix 
probe identifiers, SwissProt identifiers, etc. 
Translating from one id type to another is 
often a necessary step before any analysis is 
performed since different applications rec-
ognize different identifiers. For example, 
GoSurfer recognizes Affymetrix probe ids 
while GoMiner recognizes HUGO gene 
names. A universal identifier translation 
tool would be extremely useful but is cur-
rently not available; therefore one must 
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manually construct translation files or only 
use programs that recognize the particular 
identifiers that one is using.

The output of term enrichment analy-
sis typically comes in two forms: a list of 
terms that are enriched and a graph of GO 
terms in which the terms are color-coded 
according to their statistical significance. 
If the enriched terms are just reported as 
a list the complex relationships between 
them are not apparent and one may not re-
alize that the significant terms are actually 
related within the ontology. In contrast, if 
the output is displayed as a network, then 

one immediately sees how the terms are 
related to each other, but may not imme-
diately realize which ones are the most en-
riched. It is therefore ideal to present the 
output in both formats. An example of the 
graph output of GoMiner is presented in 
Fig. 3.1.

Certain programs may be used di-
rectly on the web (e.g., FatiGO) while 
others must be downloaded and installed. 
Among the latter, some work only on the 
Microsoft Windows operating system (e.g., 
GoSurfer) while others are written in Java 

Figure 3.1 The network of enriched GO terms in the cellular component ontology. Blue and 
cyan indicate that the term is enriched. The figure was generated using the SGD Gene Ontology 
Term Finder (http://db.yeastgenome.org/cgi-bin/GO/goTermFinder). Genes that are cyclical in 
synchronized yeast cells were input into the program.
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and are therefore platform independent 
(e.g., GoMiner).

Gene set analysis
In the previous section we discussed us-
ing the overlap of significant genes in a 
microarray analysis with functional groups 
to identify the groups whose members are 
overrepresented among these genes. In 
this case, we only consider genes that are 
deemed to be significant by some threshold 
and then ignore the particular numerical 
values. Although this is often a convenient 
way to select significant genes, in the pro-
cess we are effectively converting continu-
ous data (gene log ratios or p-values) to 
binary data (significant or not) and thus 
losing information. A variety of methods 
have been developed recently that consider 
the actual numerical values of genes when 
attempting to uncover which pathways are 
of interest.

In one recently published example, the 
authors attempted to uncover pathways 
that are differentially expressed between 
two patient populations: patients with 
and without a specific disease (Mootha et 
al., 2003). The approach used was named 
gene set enrichment analysis (GSEA) and 
attempted to identify the pathway that 
contained the most differentially expressed 
genes between the two populations. The 
analysis was performed on data collected 
from healthy and diabetic patients. The 
authors first ranked genes according to 
the expression difference between the two 
groups. They then used a Kolmogorov-
Smirnov statistic to determine which 
set of genes had high-ranking members. 
They were able to estimate the probabil-
ity of each observation by comparing the 
real scores to those of randomly permuted 
data. The analysis identified the oxidative 
phosphorylation pathway as the most dif-
ferentially expressed and demonstrated 

that the transcription factor PGC1-α,  a 
regulator of this pathway, and mutations in 
it correlate with diabetes.

Other approaches similar to GSEA 
have also been developed. For instance, 
the program GOMapper computes the 
significance of the expression of a gene set 
by computing the ratio of the average ex-
pression of genes in the set to the average 
expression of all genes in the array (Smid 
et al., 2004). A similar approach is entitled 
functional class scoring (FCS), wherein 
the enrichment of each GO term is calcu-
lated by estimating the likelihood of ob-
serving the product of probabilities of each 
individual gene associated with the term 
(Pavlidis et al., 2004). The probabilities as-
sociated with each gene are generated from 
an error model and estimate the likelihood 
that the gene is perturbed. Monte Carlo 
simulations estimate the distribution of 
the products of probabilities to enable the 
computation of the expectation that a given 
GO term is enriched for perturbed genes.

The methods described above focus 
their analysis on datasets in which each 
gene is assigned a single value. However, 
these methodologies may be extended to 
large datasets where gene expression is 
measured across multiple experiments. In 
this way, the traditional representation of 
clustered heat maps of genes versus experi-
ments may be applied to data that measure 
the activity of pathways across experiments. 
One example of this type of approach is 
the map of cancer modules generated by 
Segal et al. (2004). The authors assembled 
a dataset of 1975 published microarray ex-
periments that span 22 tumor types. They 
searched for modules that were significant-
ly active within a subset of experiments. 
Modules are defined as groups of genes that 
share a common biological function and 
are derived by combining multiple sources 
of gene groupings including GO, KEGG 
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(Kanehisa et al., 2004), and GENMAPP 
(Doniger et al., 2003).

Among the many conclusions that 
they could draw from the final module 
map, they highlight the cell cycle module 
as active across multiple tumor types, con-
sistent with the observation that all these 
tumor types involve rapidly dividing cells. 
Similarly, many tumor types have active os-
teoblastic module, consistent with the fact 
that many of these tumors metastasize to 
bone. In contrast, other modules are spe-
cific to tumor types. For example, modules 
that involve neuronal processes are only re-
pressed in a subset of tumors and are oth-
erwise not active. In general, this type of 
analysis demonstrates that a module level 
heat map is significantly more interpretable 
than a gene-level heat map and therefore 
this approach represents a useful tool for 
biologists that are trying to cope with large 
sets of expression microarrays.

Pathway coherence
In order for GO terms or other pathway 
groupings to appear activated in the previ-
ous analyses, the genes within the pathway 
must be co-regulated. That is, it is unlikely 
that a random group of genes will ever 
show up in a pathway analysis, since the 
genes are independent of each other and 
unlikely to be perturbed together. In con-
trast, if a group of genes acts as a single unit 
(all perturbed together or unperturbed 
together) then they are far more likely to 
appear active. A pathway whose genes are 
co-regulated may also be called a coherent 
pathway.

It seems reasonable that, if we could 
determine a priori which pathways are co-
herent and which are not, it might be advan-
tageous to analyze only coherent pathways. 
One possible metric to measure coherence 
was developed by Yang et al. (2004), and 
involves measuring the fraction of gene 

pairs with a pathway that are significantly 
co-expressed across a set of experiments. 
Correlation coefficients between pairs of 
genes are computed and the probability of 
observing such a correlation or higher is es-
timated. One may then compute whether 
the fraction of statistically significant cor-
relations in a pathway group is greater than 
in a random group of the same size.

Yang et al. performed this experiment 
with normal and tumor tissue samples. 
They searched for pathways defined by 
KEGG that had significant coherence. 
The found that metabolic pathways and 
protein complexes are coherent while sig-
nal transduction pathways are not. This is 
not surprising since one expects that both 
metabolic pathways and protein complexes 
should contain co-regulated genes, while 
signal transduction pathways on the other 
hand are controlled by post transcriptional 
modifications (e.g., phosphorylation) rath-
er than transcription. A list of the coherent 
pathways they identified is shown in Table 
3.1.

However, not all the genes within 
a metabolic pathway are co-regulated. 
Ihmels et al. investigated in great detail 
which components of metabolic pathways 
are coherent (Ihmels et al., 2004). For ex-
ample, they found that of the 46 genes as-
signed to the glycolysis pathway in KEGG, 
only 24 were correlated in their expres-
sion patterns across one thousand diverse 
experiments. These 24 genes are linearly 
arranged along the central part of the path-
way. They find that in general the central 
components of metabolic pathways are the 
most coherent part of the pathway, and 
that such a central component represents 
a set of linear reactions.

Ihmels et al. also extended their analy-
sis to isozyme pairs contained within met-
abolic pathways (i.e., pairs of genes with 
similar sequences that perform slightly dif-
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Table 3.1 Coherent pathways

Fructose and mannose metabolism

Sterol biosynthesis

Urea cycle and metabolism of amino acids

Pyrimidine metabolism

Arginine and proline metabolism

Glycoprotein degradation

Ubiquinone biosynthesis

Inositol phosphate metabolism

Sphingoglycolipid metabolism

Nicotinate and nicotinamide metabolism

Apoptosis

Starch and sucrose metabolism

Valine, leucine and isoleucine degradation

Lysine biosynthesis

Propanoate metabolism

Butanoate metabolism

Protein export

Photosynthesis

Aminoacyl-tRNA biosynthesis

Oxidative phosphorylation

ATP synthesis

Ribosome

Proteasome

ferent functions). They find that most of 
the pairs were separately co-regulated with 
alternative sub pathways. In other words, 
KEGG pathways may often be broken up 
into distinct sub pathways that utilize dif-
ferent members of isozyme pairs. They also 
identify genes that are co-expressed with 
the sub-pathway and are therefore likely 
components of the pathway. Often such 
genes code for transporters of the metabo-
lites utilized in the pathway or transcrip-
tion factors that regulate the pathway.

In summary, it is not only possible to 
define which pathways are coherent, but 
also to refine these pathways so that they 
become more coherent. This involves iden-
tifying the most coherent core of the path-
way and then extending these cores with 
additional genes that were not initially 
associated in the pathway but are co-ex-
pressed with the core.

Reconstruction 
of networks using 
expression data
In the preceding sections, we have dis-
cussed techniques for using pre-existing 
pathway information to interpret micro-
array expression data. An alternative ap-
proach attempts to reconstruct pathways 
directly from the data. In other words, the 
previous sections were aimed at supervised 
analysis whereas here we discuss unsuper-
vised approaches.

One of the first approaches devel-
oped to analyze microarray expression 
data was the clustering program of Eisen 
et al. (1998). They computed pairwise “dis-
tances” between genes and clustered genes 
based on these distances. The approach 
proved to be remarkably successful in facil-
itating the interpretation of data. Clusters 
typically contain genes that function within 
related pathways or biological processes. It 
was therefore possible assign functions to 
previously uncharacterized genes based on 
the functions of the genes it clusters with.

The reason that pairwise clustering 
approaches facilitate our interpretation 
of expression data is that genes with cor-
related expression tend to function within 
the same biological process. However, the 
converse is not often true. That is, genes 
that are known to function together are 
not always correlated. In fact, in the ma-
jority of cases genes that function together 
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are not significantly correlated. This be-
havior is consistent with the observation of 
the previous section that only a minority 
of pathways are coherent, and that only a 
subset of a typical coherent pathways is in 
fact truly coherent.

To overcome this difficulty, several 
methods have been developed to search 
for functional associations between genes 
that are not correlated in their expression 
patterns. One such approach has been to 
consider higher-order relationships be-
tween genes beyond the pairwise ones used 
in the original clustering methods. For in-
stance, Zhou et al. have developed what 
they term second-order analysis (Zhou et 
al., 2005). Rather than simply calculating 
pairwise correlations between genes within 
datasets, the authors compute the correla-
tion between the correlations of two pairs 
of genes across multiple datasets. In other 
words, it is possible to first compute the 
correlation between genes A and B across 
datasets X and Y: cAB(X), cAB(Y). It is 
then possible to identify a second pair of 
genes, C and D, whose correlations in da-
tasets X and Y are correlated with cAB(X) 
and cAB(Y). The two pairs of genes may 
have statistically significant second-order 
correlations even though the pairwise cor-
relations between A and C or B and D are 
not significant. Thus, it is possible to find 
relationships between genes that are not 
captured by pairwise correlations.

To compute second-order relation-
ships Zhou et al. looked at 618 yeast ex-
pression arrays that comprised 39 datasets. 
The analysis revealed 5,142 pairs of genes 
with significant correlations across some of 
these datasets and 178,799 statistically sig-
nificant quadruplets. They observed that 
83% of these quadruplets were function-
ally homogeneous by measuring how often 
they shared GO terms, implying that the 
genes participate within the same pathway. 

In contrast, only 53% of the pairwise rela-
tionships were functionally homogeneous. 
Statistically significant quadruplets seem 
to group genes into pathways more effec-
tively then pairs. Clustering second-order 
profiles allows the authors to assign genes 
to functions more effectively than cluster-
ing using Eisen’s original approach.

Finally, Zhou et al. also apply this ap-
proach to transcription factor modules. 
These are the sets of genes controlled by 
specific transcription factors. They show 
that applying second-order analysis allows 
them to infer regulation motifs in which 
two transcription factors are being con-
trolled by a third or where one transcrip-
tion factor is controlling another. They 
demonstrate that these types of relation-
ships exist between cell cycle transcription 
factors. For example, the SWI4 and NDD1 
modules are correlated in second-order 
analysis even though none of the genes in 
one module are correlated with any of the 
genes in the other. The second-order rela-
tionship implies that SWI4 is controlling 
the transcription of NDD1, and hence the 
genes regulated by these factors are related 
in a second-order fashion (Fig. 3.2).

An approach related to second-order 
analysis and developed by Li et al. is named 
liquid association (Li et al., 2004; Li, 2002). 
The idea underlying this method is that 
uncorrelated genes may in fact appear cor-
related when their relationships are con-
ditioned on the state of a third gene. For 
example, two genes A and B may appear 
uncorrelated over a large dataset. However, 
the pair might appear positively correlated 
when the values of a third gene C are high 
and negatively correlated when the values 
of C are low. This relationship between A, 
B, and C may arise if C is somehow con-
trolling the expression of both A and B.

To illustrate the utility of liquid as-
sociation the authors looked at oncogene 
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Figure 3.� Network of second-order interactions between transcription factor modules. Each 
transcription factor is known to control a group of genes based on transcription factor binding 
data (Harbison et al., 2004). These gene modules are related by second-order analysis (i.e., the 
genes from one module are not correlated to the genes in another module, but the correlations 
between the genes in the two modules are correlated across conditions). These relationships 
imply that the transcription factors are either interacting or controlling each other, or being 
controlled by a third factor.

P53. It is known from the literature that 
P53 interacts with TP53INP1 (which en-
codes a P53-inducible nuclear protein) and 
TPBP1 (which codes for P53-binding pro-
tein 1). However, these three genes show 
very low correlation across expression 
datasets. The authors therefore searched 
for a fourth gene that possibly interacted 
with these three and generated a high liq-
uid association score. Their top candidate 
was SMARC4, a gene that encodes a pro-
tein that is known to interact with P53. 
The correlations between the three initial 
genes were therefore significant when con-
ditioned on the expression of SMARC4. 
This may be due to SMARC4’s participa-
tion in the SWI/SNP transcription factor 
complex that is necessary for the activation 
of P53-mediated transcription.

Both second-order analysis and liquid 
association attempt to identify relation-
ships between small numbers of genes. 

However, methods have also been de-
veloped to reconstruct large networks of 
gene associations. One such approach uti-
lizes the formalism of Bayesian networks 
to infer gene networks (Friedman, 2003; 
Friedman et al., 2000). Bayesian networks 
model the probability of any state of the 
system based on the conditional probabil-
ity distribution of each gene with respect 
to “parent” genes:

P X X P X Un i i
i

1 ,...,( ) = ( )∏  (3.1)

where gene expression values are denoted 
by Xi and corresponding parent genes Ui. 
The relationships between genes are to 
form a DAG that must be inferred from 
the data. Inferring the DAG is often com-
putationally expensive. Furthermore, many 
DAGs provide solutions of roughly the 
same quality so it is customary to construct 
an “average network” from all the nearly 
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Figure 3.3 Yeast mating Bayesian network 
constructed by Friedman et al. (2003) from 
a yeast expression dataset of 300 mutant 
strains. Many of the genes are involved in 
mating. For instance, we see the mating 
pheromone a-factor (Mfa1 and Mfa2), along 
with genes involved in cell fusion (Fus1 and 
Fus3) and a protease that allows cells to 
recover from alpha-factor-induced cell cycle 
arrest by degrading alpha factor (Bar1).

optimal inferred DAGs. An example net-
work reconstructed using this technique is 
shown in Fig. 3.3.

Another approach that has been re-
cently implemented to reverse engineer 
entire networks is called ARACNE, 
which stands for Algorithm for the 
Reconstruction of accurate cellular net-
works (Basso et al., 2005). This approach 
uses mutual information to identify pairs 
of genes that are likely co-regulated. It then 
applies a filtering step to eliminate pairwise 
relationships that are likely to be indirect. 
This filtering step is performed using the 
“data processing inequality” from data 
transmission theory. The authors claim 

that the resulting network is enriched for 
direct interactions. They also compare this 
approach to Bayesian networks and dem-
onstrate that in certain cases it yields su-
perior results.

ARACNE was recently applied to the 
reconstruction of networks in human B-
cells. The analysis was performed on 336 
B-cell expression arrays that represented 
a wide collection of normal, transformed 
and experimentally manipulated cells. The 
resulting network includes 129,000 inter-
actions and is therefore difficult to analyze 
on a global scale. To validate their approach 
the authors focused their attention on a sub 
network centered around oncogene MYC. 
This network includes 2,063 genes, 56 of 
which were directly connected to MYC. 
Among the genes that are directly interact-
ing, about half are already known MYC 
targets. They tested 12 of the remaining 
genes using chromatin immunoprecipita-
tion (ChIP), a technique that allows one 
to experimentally determine where MYC 
is binding on the genome. They discovered 
that 11 of these were also MYC targets. 
Therefore, the approach seems to reliably 
predict which genes are MYC targets al-
though its coverage of known MYC targets 
remains sparse.

Integrated pathway 
analysis of expression 
data and transcription 
factor binding data
The techniques for pathway analysis of ex-
pression data discussed so far have utilized 
pre-existing pathway information to inter-
pret the data or have attempted to recon-
struct networks from expression data. A 
third class of techniques is now emerging 
that integrates multiple genome-scale data 
types. In particular, several approaches 
have been published recently that combine 



Uncorrected proofs — not for distribution

Pellegrini and Cokus�� |

expression data with transcription factor 
binding data.

ChIP allows one to experimentally 
determine where transcription factors 
are binding on the genome. This sort of 
data has been systematically collected for 
most of the known transcription factors in 
Saccharomyces cerevisiae (Harbison et al., 
2004) and has also been collected less sys-
tematically in many other organisms. Over 
the past few years, a number of techniques 
have emerged that attempt to interpret ex-
pression data in terms of transcription fac-
tor binding data and vice versa.

For example, one of the questions that 
can be addressed by integrating expression 
and binding data is in which phases of the 
cell cycle a transcription factor is active. 
Alter et al. (2004) provided an answer to 
this question by describing transcription 
factor binding data in terms of expres-
sion data. This technique is inspired by 
the expression deconvolution technique, in 
which expression data are represented as a 
linear combination of basis states (Lu et al., 
2003). In Alter’s work, the basis states are 
the components of cell cycle data obtained 
using singular value decomposition and 
correspond to the different phases of the 
cell cycle: G1, S, G2, and M. This analysis 
allows her to demonstrate that cell cycle 
transcription factors such as SWI4 and 
SWI6 are active in the G1 phase whereas 
the origin replication complex components 
(such as ORC1) are active in the S phase. 
In Fig. 3.4, we show that the analysis may 
be reversed and expression data may be in-
terpreted in terms of transcription factor 
binding basis states to gauge the activity of 
each transcription factor within a specific 
experiment.

Luscombe et al. performed a more 
global analysis of transcription factor ac-
tivity in yeast (Luscombe et al., 2004). 
They set out to characterize the transcrip-

tional network across multiple conditions: 
cell cycle, sporulation, diauxic shift, DNA 
damage, and stress response. In each con-
dition they reconstructed a network by 
identifying transcription factors that were 
expressed and genes that were differen-
tially expressed and created a link between 
the two when the binding data suggested 
the factor bound the gene. They then per-
formed extensive statistical analyses on 
these networks to identify changes in their 
properties.

These analyses lead to the classification 
of the experiments into two broad groups: 
endogenous processes (cell cycle and sporu-
lation) and exogenous states (diauxic shift, 
DNA damage, and stress response). The 
former are complex multistage processes. 
These have low out degrees (the number of 
target genes for a given transcription fac-
tor), large average pathlengths (the number 
of links connecting two proteins), and high 
clustering (the level of transcription factor 
inter-regulation). In contrast, exogenous 
states produce rapid, large-scale responses 
and this is best accomplished with high out 
degree, small pathlength, and low cluster-
ing. In exogenous states, a few transcrip-
tion factors drive a large number of genes 
without much “cross-talk.”

Conclusions
We have discussed a variety of recent tech-
niques that have been developed to analyze 
expression data from a pathway perspec-
tive. These techniques either leverage ex-
isting pathway information or attempt to 
deduce pathways from the expression data 
themselves. We have also illustrated how 
complementary data, such as transcription 
factor binding, may be used to enhance our 
understanding of the expression data.

A common perception among biolo-
gists is that the interpretation of expres-
sion data is one of the primary bottlenecks 
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Figure 3.4 A heat map of the activity of transcription factors in yeast deletion experiments. In 
this example, basis states are defined as the genes bound by a specific transcription factor (the 
columns). Red indicates that the genes bound by the transcription factor are over expressed in 
the deletion experiments (the rows), while green indicates that the genes are under expressed. 
This example indicates that expression deconvolution may be used as a proxy for measuring 
the activity of transcription factors.

in the path to scientific discoveries. The 
pathway analyses we have described are 
attempts to remove, or at least ameliorate, 
this bottleneck. They allow scientists to 
look underneath expression data and inter-
pret what biological phenomena are driv-
ing the observed expression patterns. As 
these techniques mature and become more 
accessible to the average biologist, expres-
sion profiling should become an even more 
powerful tool than it is already.

Finally, it is important to note that 
pathway analysis approaches are evolving 
in parallel with genomic data collection 
techniques. The availability of new data 
allows scientists to understand expression 
data in a deeper manner as we saw in the 
case of the integration of expression and 

binding profiles. Since we are merely at the 
beginning of the technological develop-
ment of these new profiling techniques, it 
is reasonable to assume that over the next 
few years a variety of new pathway analyses 
approaches will be developed that utilize 
new types of data. As this occurs, our goal 
of using expression profiling to transpar-
ently interpret the inner workings of the 
cell will become more of a reality.

Future developments and 
trends
The work we have described above pro-
vides a static picture of expression data. 
That it, it allows one to assess which path-
ways and processes are active in a specific 
experiment, but not how these change 
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with time. In the future one may imagine 
more sophisticated models of expression 
data that provide such a dynamical view of 
expression. The advantage of such descrip-
tions would be that one could generate 
predictions of how the expression of genes 
would change if experimental conditions 
are altered.

Detailed dynamical models of bio-
logical systems to date have described only 
small systems that include a few dozen 
genes and have therefore not been useful 
in interpreting expression arrays in a gen-
eral fashion. One exception is the work of 
Holter et al. that generates a simple dy-
namical model of time series expression 
data (Holter et al., 2001). Here the authors 
attempt to derive a model that predicts the 
state of the system at time t based on its 
state at an earlier time point:

Y(t + ∆t) = M⋅y(t) (3.2)

where Y(t) are the expression levels of all 
genes in an array at time t and M is a time 
translation matrix. However, it is not usu-
ally possible to solve this equation since 
the number of time points is typically 
much smaller than the number of genes. 
The authors therefore resort to modeling 
only the primary modes of the time se-
ries that are apparent from singular value 
decomposition. When they apply this ap-
proach to model yeast cell cycle data they 
demonstrate that the first two modes do 
a very good job at reproducing the system 
and that a particular 2 × 2 time translation 
matrix M reliably captures the behavior of 
the system.

Although these results seem promis-
ing, this model does not allow one to re-
liably predict how the system will change 
in response to different experimental con-
ditions (e.g., mutations or environmental 
stresses) and therefore the model is still 

primarily descriptive. Nonetheless, it sug-
gests that future approaches that possibly 
build upon these types of approaches may 
in the next few years bring us closer to the 
realization of truly predictive models. We 
might then find ourselves in a situation 
where expression arrays are used to verify 
models.
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